********** FOOD **********
return to top
Yotam Ottolenghi’s recipes for cooking with feta
Sat, 10 Jun 2023 07:00:16 GMT
A feta-filled frittata, feta-stuffed koftas with grilled peppers, and a spring salad with a buttermilk and feta dressing
I knew I was on to a good thing when my new test kitchen colleague Katja Tausig started talking about and cooking with feta. For a team whose mantra might well be “Everything’s better with feta!”, her enthusiasm, and desire to dedicate a whole column to this briny, tangy, salty cheese, meant that the fit was complete. So here’s to welcoming Katja and to celebrating feta: crumble it, bake it, blitz it, stuff with it, showcase it.
Continue reading...Newcastle-based baker makes second attempt to win over Saltash after franchise store failed
Saying that feelings run high about Greggs in Cornwall is an understatement. A local critic memorably described the company as the “devil’s spawn” when it dared to set up shop in Truro.
But the Newcastle-based baker has not been cowed and its fourth shop in the county opens in Saltash on Saturday. It is Greggs’ second attempt to win over the town, after a franchise store that opened in 2018 closed within a year.
Continue reading...The gardening pioneer Joy Larkhom changed how we grow veg and championed rocket, salad bags and pak choi. What is she growing now?
Joy Larkcom is singing the praises of sugarloaf chicory. “It’s got deep roots, its leaves form a dense, crisp heart, and it withstands drought better than lettuce,” she says. “Sadly, these rarely find their way into the seed catalogues for amateur gardeners.” Her love for this unsung salad leaf sums up Larkcom’s lifelong passion: to bring more variety to our kitchen tables and preserve genetic diversity.
Larkcom, 87, is a vegetable grower and writer famous for her influential books from The Organic Salad Garden to Grow Your Own Vegetables. Drawing from direct experience – for 30 years as an experimental market gardener in Suffolk; latterly in her garden in West Cork – her writing reads just as she speaks: authoritative yet lighthearted, combining practical, scientifically sound advice with an enthusiasm for continued learning.
Continue reading...Price and convenience are compared while taking on board the reaction of a young consumer
Children are expensive, even without a cost of living crisis to contend with. According to the Child Poverty Action Group’s most recent findings, the cost of raising a child until the age of 18 has reached £157,000 for a couple and £208,000 for lone parents.
Childcare costs can be extortionate, kids grow out of clothes in the blink of an eye, and activities such as swimming and football lessons all cost money. However, one area where parents are particularly feeling the pinch is with the price of food. The most recent official data showed that food and nonalcoholic drink prices jumped by 19% in the 12 months to April, meaning people are having to fork out more than ever to feed their children.
Continue reading...Dutiful German generosity revealed in analysis of gratuity habits in six EU countries, the UK and US
In Germany it seems to be pretty much automatic, pretty much all the time. In France and Spain it all depends – presumably on social subtleties that you have to be French or Spanish to understand. In Italy, why would you even bother?
When, and how much, to tip is a question that has been vexing visitors to Europe for as long as people have been travelling around the continent. Outside their own country, it seems even Europeans don’t know the answer.
Continue reading...The Indigenous children – one of whom was just 11 months old – are thought to have eaten food dropped by rescuers and used their own ancestral knowledge
Malnourished and covered in insect bites, four Indigenous children were rescued alive from the Colombian Amazon on Friday afternoon, 40 days after the plane they were travelling in crashed into the jungle.
In a remarkable feat of resilience, the children survived heavy storms in one of the most inhospitable parts of the country, home to predatory animals and armed groups.
Continue reading...With only a fortnight left of feijoa season in Australia, enthusiasts are snapping up the green-skinned fruits – if they can find them
Apples and oranges are the lowest hanging fruit during Australia’s autumn and winter. But this time of year is also the short, sweet season for a far more obscure crop: feijoa. The fruit, native to South America, has a green skin, an oval shape and sweet-tangy flesh that is beloved by those in the know, including New Zealanders – feijoa season is highly anticipated across the Tasman.
Feijoa (pronounced fay-joh-uh) grows well in Victoria, Tasmania, New South Wales, and the Adelaide Hills in South Australia. There are approximately two weeks remaining for this year’s season, with supply expected to come primarily from Western Australia.
Continue reading...Biogen Inc. BIIB shares rallied in the extended session late Friday following a full-day halt after the biotech company received a recommendation from a Food and Drug Administration advisory committee to approve an Alzheimer’s treatment it makes with Eisai Co. ESALF Biogen shares rallied as much as 9% after hours, after spending the regular session halted at $308.88. Eisai shares finished Friday up 9.4% at $81.03. On Friday, the FDA’s Peripheral and Central Nervous System Drugs Advisory Committee voted unanimously to recommend the companies’ drug Leqembi to treat Alzheimer’s disease. While the FDA is not bound to committee recommendations, the agency generally follows them. Approval of the drug is expected by July 6.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Eisai Co. Ltd. ESALF shares were up 9.4% Friday after advisers to the U.S. Food and Drug Administration voted unanimously in favor of the Eisai and Biogen BIIB Alzheimer’s treatment Leqembi. The panel of independent experts said that a clinical study had verified the clinical benefit of Leqembi, also known as lecanemab. The treatment got a green light under the FDA’s accelerated approval program in January. An FDA decision on traditional approval is expected by July 6. Advisory committee votes are not binding, but the FDA often follows committee recommendations. Biogen stock trading was halted Friday during the advisory committee meeting.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Māori tribes record changes to lands and oceans, with some food-gathering practices that have sustained communities for hundreds of years lost
Danny Paruru crouches at the water’s edge, letting it wash over his hand. Behind him, at the far hill-line, the sharp peaks mark out where the lands of his tribe, Te Whakatōhea, once stretched to before they were forcibly taken by the crown. In front of him the surface of the estuary ripples.
“Years ago our kaumatua [elders] were realising that we were deemed to be landless people – that we didn’t have a lot of land left, after the lands were confiscated. So they turned their eyes to the ocean,” he says. “Places around this area provided our sustenance and our survival, over many generations of our people.”
Continue reading...UN and US halt food assistance in the country, where 20 million people rely on aid, in order to investigate ‘diversion’ of supplies
Food aid to Ethiopia has been suspended after the discovery that humanitarian supplies meant for people in need were being stolen.
The UN’s World Food Programme (WFP) said on Friday that it is halting food assistance while it rolled out “enhanced safeguards and controls that will ensure humanitarian food assistance reaches targeted, vulnerable people”. It comes a day after the US Agency for International Development (USAid) said it was doing the same, after a “countrywide review” uncovered “a widespread and coordinated campaign” that was diverting food assistance from Ethiopian people.
Continue reading...Far from helping customers by absorbing soaring food costs, supermarket chiefs and shareholders are enjoying a bonanza
In recent weeks, supermarket spin doctors have been rolling out chief executives to counter Unite research that revealed how UK supermarkets are profiteering at the expense of their customers. The latest in this long line of protesting CEOs was Simon Roberts, chief executive of Sainsbury’s. He was asked on the BBC if the supermarket had been guilty of profiteering: “Absolutely not” was his strident denial. That denial lost some of its credibility this week when Sainsbury’s announced that Simon Roberts’ earnings leaped 40% last year to nearly £5m.
And there we have it. Facts will out. Roberts’ bonanza bonuses are actually a boardroom reward for the delivery of bumper profits in recent years. How else to explain it? Britain’s CEOs are never done telling us that their skyscraper salaries are index-linked to their blinding achievements delivering for shareholders.
Sharon Graham is the general secretary of Unite
Continue reading...Shares of Sientra Inc. SIEN skyrocketed 82.3% toward a seven-month high on heavy volume to pace all premarket gainers Friday after the medical aesthetics company after the U.S. Food and Drug Administration granted 510(k)-clearance for its AlloX2 Pro Tissue Expander. Trading volume ballooned to 4.2 million shares, compared with the full-day average of about 328,900 shares. The 510(k) clearance means Sientra’s device is “substantially equivalent” to another device that has been cleared for marketing. “This innovation allows the AlloX2 Pro to be labeled as MRI-conditional, making it the only tissue expander cleared in the United States for exposure to magnetic resonance imaging, an important screening tool for breast reconstruction patients,” said AlloX2 inventor Thomas McClellan. The stock has dropped 13.8% year to date through Thursday, while the S&P 500 has gained 11.8%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Britain’s health is a national scandal, not just because of the state of the NHS, but because the government refuses to take action on our diets
In April 1994, the CEOs of the US’s seven biggest tobacco companies swore on oath before a Senate committee that nicotine was “not addictive”. At the time it was estimated that 3,000 American children were being induced by said companies to start smoking every day.
Last Monday, the BBC’s Panorama programme came close to repeating that scene with Britain’s food manufacturers. The products at issue are ultra-processed foods (UPF). Their makers’ denial of the harm these products may cause is as adamant as those tobacco execs’ once was, and the consequences could be equally lethal.
Simon Jenkins is a Guardian columnist
Continue reading...Sushiro says business badly damaged by video of teenager licking soy sauce bottle and wiping saliva on passing food
A sushi chain in Japan is seeking ¥67m (£383,280) in damages from a diner who filmed himself licking a soy sauce bottle and wiping saliva on a slice of fish at one of its restaurants, part of a wave of “sushi terrorism” that scandalised the country’s budget food industry.
Sushiro, Japan’s biggest operator of revolving sushi restaurants, filed the suit with a court in Osaka, according to the Kyodo news agency, arguing that it had suffered financial losses after the incident triggered public fears over food hygiene.
Continue reading...The UN has blamed the destruction of the Kakhovka dam on Russia. What impact will the flooding have on the war in Ukraine? Dan Sabbagh reports
In the early hours of Tuesday, the Kakhovka dam in Ukraine was destroyed. The breach of the dam left 42,000 people at immediate risk of flooding, and is a blow to Ukrainian food and water supplies.
Ukraine has accused Russia, which has been in control of the dam for more than a year, of mining and blowing up the structure. Volodymyr Zelenskiy described the incident as an ‘environmental bomb of mass destruction’.
Continue reading...The powerful lights mounted on the border wall threaten the dark skies that make southern Arizona a biodiversity hotspot.
The post The Feds Have Thousands of Stadium Lights on the Border. Switching Them On Would Devastate Desert Ecosystems. appeared first on The Intercept.
A growing number of countries are preparing to shift from using the U.S. dollar in trade, which could undermine the greenback’s global supremacy.
The post Monetary Blowback: How U.S. Wars, Sanctions, and Hegemony Are Threatening the Dollar’s Reserve Currency Dominance appeared first on The Intercept.
The food we eat determines how we feel, and nothing beats a good fry-up, although in moderation of course. As we prepare for missions to the Moon and on to Mars, astronauts will be happy to hear from researchers that one staple comfort food is not out of reach, even in space: fries.
Political messaging expert Anat Shenker-Osorio breaks down the art of reframing the debate for progressives to win.
The post A Dmitri Rebuttal by Messaging Expert Anat Shenker-Osorio appeared first on The Intercept.
A weekly email bringing you our best food writing, the latest recipes, seasonal eating ideas and must-read restaurant reviews
Each week we’ll keep you up-to-date with all the food coverage from the Guardian and the Observer. We’ll send you the latest recipes from Yotam Ottolenghi, Nigel Slater, Meera Sodha and all our star cooks, stand-out food features and seasonal eating inspiration, plus restaurant reviews from Grace Dent and Jay Rayner.
Sign up below to start receiving the best of our culinary journalism in one mouth-watering weekly email.
Continue reading...At IEEE, we know that the advancement of science and technology is the engine that drives the improvement of the quality of life for every person on this planet. Unfortunately, as we are all aware, today’s world faces significant challenges, including escalating conflicts, a climate crisis, food insecurity, gender inequality, and the approximately 2.7 billion people who cannot access the Internet.
The COVID-19 pandemic exposed the digital divide like never before. The world saw the need for universal broadband connectivity for remote work, online education, telemedicine, entertainment, and social networking. Those who had access thrived while those without it struggled. As millions of classrooms moved online, the lack of connectivity made it difficult for some students to participate in remote learning. Adults who could not perform their job virtually faced layoffs or reduced work hours.
The pandemic also exposed weaknesses in the global infrastructure that supports the citizens of the world. It became even more apparent that vital communications, computing, energy, and distribution infrastructure was not always equitably distributed, particularly in less developed regions.
I had the pleasure of presenting the 2023 IEEE President’s Award to Doreen Bogdan-Martin, secretary-general of the International Telecommunication Union, on 28 March, at ITU’s headquarters in Geneva. The award recognizes her distinguished leadership at the agency and her notable contributions to the global public.
It is my honor to recognize such a transformational leader and IEEE member for her demonstrated commitment to bridging the digital divide and to ensuring connectivity that is safe, inclusive, and affordable to all.
Nearly 45 percent of global households do not have access to the Internet, according to UNESCO. A report from UNICEF estimates that nearly two-thirds of the world’s schoolchildren lack Internet access at home.
This digital divide is particularly impactful on women. who are 23 percent less likely than men to use the Internet. According to the United Nations Educational, Scientific and Cultural Organization, in 10 countries across Africa, Asia, and South America, women are between 30 percent and 50 percent less likely than men to make use of the Internet.
Even in developed countries, Internet access is often lower than one might imagine. More than six percent of the U.S. population does not have a high-speed connection. In Australia, the figure is 13 percent. Globally, just over half of households have an Internet connection, according to UNESCO. In the developed world, 87 percent are connected, compared with 47 percent in developing nations and just 19 percent in the least developed countries.
As IEEE looks to lead the development of technology to tackle climate change and empower universal prosperity, it is essential that we recognize the role that meaningful connectivity and digital technology play in the organization’s goals to support global sustainability, drive economic growth, and transform health care, education, employment, gender equality, and youth empowerment.
IEEE members around the globe are continuously developing and applying technology to help solve these problems. It is that universal passion—to improve global conditions—that is at the heart of our mission, as well as our expanding partnerships and significant activities supporting the achievement of the U.N. Sustainable Development Goals.
One growing partnership is with the International Telecommunication Union, a U.N. specialized agency that helps set policy related to information and communication technologies. IEEE Member Doreen Bogdan-Martin was elected as ITU secretary-general and took office on 1 January, becoming the first woman to lead the 155-year-old organization. Bogdan-Martin is the recipient of this year’s IEEE President’s Award [see sidebar].
IEEE and ITU share the goal of bringing the benefits of technology to all of humanity. I look forward to working closely with the U.N. agency to promote meaningful connectivity, intensify cooperation to connect the unconnected, and strengthen the alignment of digital technologies with inclusive sustainable development.
I truly believe that one of the most important applications of technology is to improve people’s lives. For those in underserved regions of the world, technology can improve educational opportunities, provide better health care, alleviate suffering, and maintain human dignity.
Technology and technologists, particularly IEEE members, have a significant role to play in shaping life on this planet. They can use their skills to develop and advance technology—from green energy to reducing waste and emissions, and from transportation electrification to digital education, health, and agriculture. As a person who believes in the power of technology to benefit humanity, I find this to be a very compelling vision for our shared future.
Please share your thoughts with me: president@ieee.org.
—SAIFUR RAHMAN
IEEE president and CEO
This article appears in the June 2023 print issue as “Connecting the Unconnected.”
Stephen Cass: Welcome to Fixing the Future, an IEEE Spectrum podcast. This episode is brought to you by IEEE Xplore, the digital library with over 6 million technical documents and free search. I’m senior editor Stephen Cass, and today I’m talking with a former Spectrum editor, Sally Adee, about her new book, We Are Electric: The New Science of Our Body’s Electrome. Sally, welcome to the show.
Sally Adee: Hi, Stephen. Thank you so much for having me.
Cass: It’s great to see you again, but before we get into exactly what you mean by the body’s electrome and so on, I see that in researching this book, you actually got yourself zapped quite a bit in a number of different ways. So I guess my first question is: are you okay?
Adee: I mean, as okay as I can imagine being. Unfortunately, there’s no experimental sort of condition and control condition. I can’t see the self I would have been in the multiverse version of myself that didn’t zap themselves. So I think I’m saying yes.
Cass: The first question I have then is what is an electrome?
Adee: So the electrome is this word, I think, that’s been burbling around the bioelectricity community for a number of years. The first time it was committed to print is a 2016 paper by this guy called Arnold De Loof, a researcher out in Europe. But before that, a number of the researchers I spoke to for this book told me that they had started to see it in papers that they were reviewing. And I think it wasn’t sort of defined consistently always because there’s this idea that seems to be sort of bubbling to the top, bubbling to the surface, that there are these electrical properties that the body has, and they’re not just epiphenomena, and they’re not just in the nervous system. They’re not just action potentials, but that there are electrical properties in every one of our cells, but also at the organ level, potentially at the sort of entire system level, that people are trying to figure out what they actually do.
And just as action potentials aren’t just epiphenomena, but actually our control mechanisms, they’re looking at how these electrical properties work in the rest of the body, like in the cells, membrane voltages and skin cells, for example, are involved in wound healing. And there’s this idea that maybe these are an epigenetic variable that we haven’t been able to conscript yet. And there’s such promise in it, but a lot of the research, the problem is that a lot of the research is being done across really far-flung scientific communities, some in developmental biology, some of it in oncology, a lot of it in neuroscience, obviously. But what this whole idea of the electrome is— I was trying to pull this all together because the idea behind the book is I really want people to just develop this umbrella of bioelectricity, call it the electrome, call it bioelectricity, but I kind of want the word electrome to do for bioelectricity research what the word genome did for molecular biology. So that’s basically the spiel.
Cass: So I want to surf back to a couple points you raised there, but first off, just for people who might not know, what is an action potential?
Adee: So the action potential is the electrical mechanism by which the nervous signal travels, either to actuate motion at the behest of your intent or to gain sensation and sort of perceive the world around you. And that’s the electrical part of the electrochemical nervous impulse. So everybody knows about neurotransmitters at the synapse and— well, not everybody, but probably Spectrum listeners. They know about the serotonin that’s released and all these other little guys. But the thing is you wouldn’t be able to have that release without the movement of charged particles called ions in and out of the nerve cell that actually send this impulse down and allow it to travel at a rate of speed that’s fast enough to let you yank your hand away from a hot stove when you’ve touched it, before you even sort of perceive that you did so.
Cass: So that actually brings me to my next question. So you may remember in some Spectrum‘s editorial meetings when we were deciding if a tech story was for us or not, that literally, we would often ask, “Where is the moving electron? Where is the moving electron?” But bioelectricity is not really based on moving electrons. It’s based on these ions.
Yeah. So let’s take the neuron as an example. So what you’ve got is— let me do like a— imagine a spherical cow for a neuron, okay? So you’ve got a blob and it’s a membrane, and that separates the inside of your cell from the outside of your cell. And this membrane is studded with tens of thousands, I think, little pores called ion channels. And the pores are not just sieve pores. They’re not inert. They’re really smart. And they decide which ions they like. Now, let’s go to the ions. Ions are suffusing your extracellular fluid, all the stuff that bathes you. It’s basically the reason they say you’re 66 percent water or whatever. This is like sieve water. It’s got sodium, potassium, calcium, etc., and these ions are charged particles.
So when you’ve got a cell, it likes potassium, the neuron, it likes potassium, it lets it in. It doesn’t really like sodium so much. It’s got very strong preferences. So in its resting state, which is its happy place, those channels allow potassium ions to enter. And those are probably where the electrons are, actually, because an ion, it’s got a plus-one charge or a minus-one charge based on— but let’s not go too far into it. But basically, the cell allows the potassium to come inside, and its resting state, which is its happy place, the separation of the potassium from the sodium causes, for all sorts of complicated reasons, a charge inside the cell that is minus 70 degree— sorry, minus 70 millivolts with respect to the extracellular fluid.
Cass: Before I read your book, I kind of had the idea that how neurons use electricity was, essentially, settled science, very well understood, all kind of squared away, and this was how the body used electricity. But even when it came to neurons, there’s a lot of fundamentals, kind of basic things about how neurons use electricity that we really only established relatively recently. Some of the research you’re talking about is definitely not a century-old kind of basic science about how these things work.
Adee: No, not at all. In fact, there was a paper released in 2018 that I didn’t include, which I’m really annoyed by. I just found it recently. Obviously, you can’t find all the papers. But it’s super interesting because it blends that whole sort of ionic basis of the action potential with another thing in my book that’s about how cell development is a little bit like a battery getting charged. Do you know how cells assume an electrical identity that may actually be in charge of the cell fate that they meet? And so we know abou— sorry, the book goes into more detail, but it’s like when a cell is stem or a fertilized egg, it’s depolarized. It’s at zero. And then when it becomes a nerve cell, it goes to that minus 70 that I was talking about before. If it becomes a fat cell, it’s at minus 50. If it’s musculoskeletal tissue, it goes to minus 90. Liver cells are like around minus 40. And so you’ve got real identitarian diversity, electrical diversity in your tissues, which has something to do with what they end up doing in the society of cells. So this paper that I was talking about, the 2018 paper, they actually looked at neurons. This was work from Denis Jabaudon at the University of Geneva, and they were looking at how neurons actually differentiate. Because when baby neurons are born-- your brain is made of all kinds of cells. It’s not just cortical cells. There’s staggering variety of classes of neurons. And as cells actually differentiate, you can watch their voltage change, just like you can do in the rest of the body with these electrosensitive dyes. So that’s an aspect of the brain that we hadn’t even realized until 2018.
Cass: And that all leads me to my next point, which is if you think bioelectricity, we think, okay, nerves zapping around. But neurons are not the only bioelectric network in the body. So talk about some of the other sorts of electrical networks we have, completely, or are largely separate from our neural networks?
Adee: Well, so Michael Levin is a professor at Tufts University. He does all kinds of other stuff, but mainly, I guess, he’s like the Paul Erdos of bioelectricity, I like to call him, because he’s sort of the central node. He’s networked into everybody, and I think he’s really trying to, again, also assemble this umbrella of bioelectricity to study this all in the aggregate. So his idea is that we are really committed to this idea of bioelectricity being in charge of our sort of central communications network, the way that we understand the environment around us and the way that we understand our ability to move and feel within it. But he thinks that bioelectricity is also how— that the nervous system kind of hijacked this mechanism, which is way older than any nervous system. And he thinks that we have another underlying network that is about our shape, and that this is bioelectrically mediated in really important ways, which impacts development, of course, but also wound healing. Because if you think about the idea that your body understands its own shape, what happens when you get a cut? How does it heal it? It has to go back to some sort of memory of what its shape is in order to heal it over. In animals that regenerate, they have a completely different electrical profile after they’ve been—so after they’ve had an arm chopped off.
So it’s a very different electrical— yeah, it’s a different electrical process that allows a starfish to regrow a limb than the one that allows us to scar over. So you’ve got this thing called a wound current. Your skin cells are arranged in this real tight wall, like little soldiers, basically. And what’s important is that they’re polarized in such a way that if you cut your skin, all the sort of ions flow out in a certain way, which creates this wound current, which then generates an electric field, and the electric field acts like a beacon. It’s like a bat signal, right? And it guides in these little helper cells, the macrophages that come and gobble up the mess and the keratinocytes and the guys who build it back up again and scar you over. And it starts out strong, and as you scar over, as the wound heals, it very slowly goes away. By the time the wound is healed, there’s no more field. And what was super interesting is this guy, Richard Nuccitelli, invented this thing called the Dermacorder that’s able to sense and evaluate the electric field. And he found that in people over the age of 65, the wound field is less than half of what it is in people under 25. And that actually goes in line with another weird thing about us, which is that our bioelectricity— or sorry, our regeneration capabilities are time-dependent and tissue-dependent.
So you probably know that the intestinal tissue regenerates all the time. You’re going to digest next week’s food with totally different cells than this morning’s food. But also, we’re time-dependent because when we’re just two cells, if you cleave that in half, you get identical twins. Later on during fetal development, it’s totally scarless, which is something we found out, because when we started being able to do fetal surgery in the womb, it was determined that we heal, basically, scarlessly. Then we’re born, and then between the ages of 7 and 11— until we are between the ages of 7 and 11, you chop off a fingertip, it regenerates perfectly, including the nail, but we lose that ability. And so it seems like the older we get, the less we regenerate. And so they’re trying to figure out now how— various programs are trying to figure out how to try to take control of various aspects of our sort of bioelectrical systems to do things like radically accelerate healing, for example, or how to possibly re-engage the body’s developmental processes in order to regenerate preposterous things like a limb. I mean, it sounds preposterous now. Maybe in 20 years, it’ll just be.
Cass: I want to get into some of the technologies that people are thinking of building on this sort of new science. Part of it is that the history of this field, both scientifically and technologically, has really been plagued by the shadow of quackery. And can you talk a little bit about this and how, on the one hand, there’s been some things we’re very glad that we stopped doing some very bad ideas, but it’s also had this shadow on sort of current research and trying to get real therapies to patients?
Adee: Yeah, absolutely. That was actually one of my favorite chapters to write, was the spectacular pseudoscience one, because, I mean, that is so much fun. So it can be boiled down to the fact that we were trigger happy because we see this electricity, we’re super excited about it. We start developing early tools to start manipulating it in the 1700s. And straight away, it’s like, this is an amazing new tool, and there’s all these sort of folk cures out there that we then decide that we’re going to take— not into the clinic. I don’t know what you’d call it, but people just start dispensing this stuff. This is separate from the discovery of endogenous electrical activity, which is what Luigi Galvani famously discovered in the late 1700s. He starts doing this. He’s an anatomist. He’s not an electrician. Electrician, by the way, is what they used to call the sort of literati who were in charge of discovery around electricity. And it had a really different connotation at the time, that they were kind of like the rocket scientists of their day.
But Galvani’s just an anatomist, and he starts doing all of these experiments using these new tools to zap frogs in various ways and permutations. And he decides that he has answered a whole different old question, which is how does man’s will animate his hands and let him feel the world around him? And he says, “This is electrical in nature.” This is a long-standing mystery. People have been bashing their heads against it for the past 100, 200 years. But he says that this is electrical, and there’s a big, long fight. I won’t get into too much between Volta, the guy who invented the battery, and Galvani. Volta says, “No, this is not electrical.” Galvani says, “Yes, it is.” But owing to events, when Volta invents the battery, he basically wins the argument, not because Galvani was wrong, but because Volta had created something useful. He had created a tool that people could use to advance the study of all kinds of things. Galvani’s idea that we have an endogenous electrical sort of impulse, it didn’t lead to anything that anybody could use because we didn’t have tools sensitive enough to really measure it. We only sort of had indirect measurements of it.
And his nephew, after he dies in ignominy, his nephew decides to bring it on himself to rescue, single-handedly, his uncle’s reputation. The problem is, the way he does it is with a series of grotesque, spectacular experiments. He very famously reanimated— well, zapped until they shivered, the corpses of all these dead guys, dead criminals, and he was doing really intense things like sticking electrodes connected to huge voltaic piles, Proto batteries, into the rectums of dead prisoners, which would make them sit up halfway and point at the people who are assembled, this very titillating stuff. Many celebrities of the time would crowd around these demonstrations.
Anyway, so Galvani basically—or sorry, Aldini, the nephew, basically just opens the door to everyone to be like, “Look what we can do with electricity.” Then in short order, there’s a guy who creates something called the Celestial Bed, which is a thing— they’ve got rings, they’ve got electric belts for stimulating the nethers. The Celestial Bed is supposed to help infertile couples. This is how sort of just wild electricity is in those days. It’s kind of like— you know how everybody went crazy for crypto scams last year? Electricity was like the crypto of 1828 or whatever, 1830s. And the Celestial Bed, so people would come and they would pay £9,000 to spend a night in it, right? Well, not at the time. That’s in today’s money. And it didn’t even use electricity. It used the idea of electricity. It was homeopathy, but electricity. You don’t even know where to start. So this is the sort of caliber of pseudoscience, and this is really echoed down through the years. That was in the 1800s. But when people submit papers or grant applications, I heard more than one researchers say to me— people would look at this electric stuff, and they’d be like, “Does anyone still believe this shit?” And it’s like, this is rigorous science, but it’s been just tarnished by the association with this.
Cass: So you mentioned wound care, and the book talks about some of the ways [inaudible] would care. But we’re also looking at other really ambitious ideas like regenerating limbs as part of this extension of wound care. And also, you make the point of certainly doing diagnostics and then possibly treatments for things like cancer. In thinking about cancer in a very different way than the really very, very tightly-focused genetic view we have of cancer now, and thinking about it kind of literally in a wider context. So can you talk about that a little bit?
Adee: Sure. And I want to start by saying that I went to a lot of trouble to be really careful in the book. I think cancer is one of those things that— I’ve had cancer in my family, and it’s tough to talk about it because you don’t want to give people the idea that there’s a cure for cancer around the corner when this is basic research and intriguing findings because it’s not fair. And I sort of struggled. I thought for a while, like, “Do I even bring this up?” But the ideas behind it are so intriguing, and if there were more research dollars thrown at it or pounds or whatever, Swiss francs, you might be able to really start moving the needle on some of this stuff. The idea is, there are two electrical— oh God, I don’t want to say avenues, but it is unfortunately what I have to do. There are two electrical avenues to pursue in cancer. The first one is something that a researcher called Mustafa Djamgoz at Imperial College here in the UK, he has been studying this since the ‘90s. Because he used to be a neurobiologist. He was looking at vision. And he was talking to some of his oncologist Friends, and they gave him some cancer cell lines, and he started looking at the behavior of cancer cells, the electrical behavior of cancer cells, and he started finding some really weird behaviors.
Cancer cells that should not have had anything to do with action potentials, like from prostate cancer lines, when he looked at them, they were oscillating like crazy, as if they were nerves. And then he started looking at other kinds of cancer cells, and they were all oscillating, and they were doing this oscillating behavior. So he spent like seven years sort of bashing his head against the wall. Nobody wanted to listen to him. But now, way more people are now investigating this. There’s going to be an ion channel at Cancer Symposium I think later this month, actually, in Italy. And he found, and a lot of other researchers like this woman, Annarosa Arcangeli, they have found that the reason that cancer cells may have these oscillating properties is that this is how they communicate with each other that it’s time to leave the nest of the tumor and start invading and metastasizing. Separately, there have been very intriguing-- this is really early days. It’s only a couple of years that they’ve started noticing this, but there have been a couple of papers now. People who are on certain kinds of ion channel blockers for neurological conditions like epilepsy, for example, they have cancer profiles that are slightly different from normal, which is that if they do get cancer, they are slightly less likely to die of it. In the aggregate. Nobody should be starting to eat ion channel blockers.
But they’re starting to zero in on which particular ion channels might be responsible, and it’s not just one that you and I have. These cancer kinds, they are like a expression of something that normally only exists when we’re developing in the womb. It’s part of the reason that we can grow ourselves so quickly, which of course, makes sense because that’s what cancer does when it metastasizes, it grows really quickly. So there’s a lot of work right now trying to identify how exactly to target these. And it wouldn’t be a cure for cancer. It would be a way to keep a tumor in check. And this is part of a strategy that has been proposed in the UK a little bit for some kinds of cancer, like the triple-negative kind that just keep coming back. Instead of subjecting someone to radiation and chemo, especially when they’re older, sort of just really screwing up their quality of life while possibly not even giving them that much more time. What if instead you sort of tried to treat cancer more like a chronic disease, keep it managed, and maybe that gives a person like 10 or 20 years? That’s a huge amount of time. And while not messing up with their quality of life.
This is a whole conversation that’s being had, but that’s one avenue. And there’s a lot of research going on in this right now that may yield fruit sort of soon. The much more sci-fi version of this, the studies have mainly been done in tadpoles, but they’re so interesting. So Michael Levin, again, and his postdoc at the time, I think, Brook Chernet, they were looking at what happens— so it’s uncontroversial that as a cancer cell-- so let’s go back to that society of cells thing that I was talking about. You get fertilized egg, it’s depolarized, zero, but then its membrane voltage charges, and it becomes a nerve cell or skin cell or a fat cell. What’s super interesting is that when those responsible members of your body’s society decide to abscond and say, “Screw this. I’m not participating in society anymore. I’m just going to eat and grow and become cancer,” their membrane voltage also changes. It goes much closer to zero again, almost like it’s having a midlife crisis or whatever.
So what they found, what Levin and Chernet found is that you can manipulate those cellular electrics to make the cell stop behaving cancerously. And so they did this in tadpoles. They had genetically engineered the tadpoles to express tumors, but when they made sure that the cells could not depolarize, most of those tadpoles did not express the tumors. And when they later took tadpoles that already had the tumors and they repolarized the voltage, those tumors, that tissue started acting like normal tissue, not like cancer tissue. But again, this is the sci-fi stuff, but the fact that it was done at all is so fascinating, again, from that epigenetic sort of body pattern perspective, right?
Cass: So sort of staying with that sci-fi stuff, except this one, even more closer to reality. And this goes back to some of these experiments which you zapped yourself. Can you talk a little bit about some of these sort of device that you can wear which appear to really enhance certain mental abilities? And some of these you [inaudible].
Adee: So the kit that I wore, I actually found out about it while I was at Spectrum, when I was a DARPATech. And this program manager told me about it, and I was really stunned to find out that just by running two milliamps of current through your brain, you would be able to improve your-- well, it’s not that your ability is improved. It was that you could go from novice to expert in half the time that it would take you normally, according to the papers. And so I really wanted to try it. I was trying to actually get an expert feature written for IEEE Spectrum, but they kept ghosting me, and then by the time I got to New Scientist, I was like, fine, I’m just going to do it myself. So they let me come over, and they put this kit on me, and it was this very sort of custom electrodes, these things, they look like big daisies. And this guy had brewed his own electrolyte solution and sort of smashed it onto my head, and it was all very slimy.
So I was doing this video game called DARWARS Ambush!, which is just like a training— it’s a shooter simulation to help you with shooting. So it was a Gonzo stunt. It was not an experiment. But he was trying to replicate the conditions of me not knowing whether the electricity was on as much as he could. So he had it sort of behind my back, and he came in a couple of times and would either pretend to turn it on or whatever. And I was practicing and I was really bad at it. That is not my game. Let’s just put it that way. I prefer driving games. But it was really frustrating as well because I never knew when the electricity was on. So I was just like, “There’s no difference. This sucks. I’m terrible.” And that sort of inner sort of buzz kept getting stronger and stronger because I’d also made bad choices. I’d taken a red-eye flight the night before. And I was like, “Why would I do that? Why wouldn’t I just give myself one extra day to recover before I go in and do this really complicated feature where I have to learn about flow state and electrical stimulation?” And I was just getting really tense and just angrier and angrier. And then at one point, he came in after my, I don’t know, 5th or 6th, I don’t know, 400th horrible attempt where I just got blown up every time. And then he turned on the electricity, and I could totally feel that something had happened because I have a little retainer in my mouth just at the bottom. And I was like, “Whoa.” But then I was just like, “Okay. Well, now this is going to suck extra much because I know the electricity is on, so it’s not even a freaking sham condition.” So I was mad.
But then the thing started again, and all of a sudden, all the sort of buzzing little angry voices just stopped, and it was so profound. And I’ve talked about it quite a bit, but every time I remember it, I get a little chill because it was the first time I’d ever realized, number one, how pissy my inner voices are and just how distracting they are and how abusive they are. And I was like, “You guys suck, all of you.” But somebody had just put a bell jar between me and them, and that feeling of being free from them was profound. At first, I didn’t even notice because I was just busy doing stuff. And all of a sudden, I was amazing at this game and I dispatched all of the enemies and whatnot, and then afterwards, when they came in, I was actually pissed because I was just like, “Oh, now I get it right and you come in after three minutes. But the last times when I was screwing it up, you left me in there to cook for 20 minutes.” And they were like, “No, 20 minutes has gone by,” which I could not believe. But yeah, it was just a really fairly profound experience, which is what led me down this giant rabbit hole in the first place. Because when I wrote the feature afterwards, all of a sudden I started paying attention to the whole TDCS thing, which I hadn’t yet. I had just sort of been focusing [crosstalk].
Cass: And that’s transcranial—?
Adee: Oh sorry, transcranial direct current stimulation.
Cass: There you go. Thank you. Sorry.
Adee: No. Yeah, it’s a mouthful. But then that’s when I started to notice that quackery we were talking about before. All that history was really informing the discussion around it because people were just like, “Oh, sure. Why don’t you zap your brain with some electricity and you become super smart.” And I was like, “Oh, did I like fall for the placebo effect? What happened here?” And there was this big study from Australia where the guy was just like, “When we average out all of the effects of TDCS, we find that it does absolutely nothing.” Other guys stimulated a cadaver to see if it would even reach the brain tissue and included it wouldn’t. But that’s basically what started me researching the book, and I was able to find answers to all those questions. But of course, TDCS, I mean, it’s finicky just like the electrome. It’s like your living bone is conductive. So when you’re trying to put an electric field on your head, basically, you have to account for things like how thick is that person’s skull in the place that you want to stimulate. They’re still working out the parameters.
There have been some really good studies that show sort of under which particular conditions they’ve been able to make it work. It does not work for all conditions for which it is claimed to work. There is some snake oil. There’s a lot left to be done, but a better understanding of how this affects the different layers of the sort of, I guess, call it, electrome, would probably make it something that you could use replicability. Is that a word? But also, that applies to things like deep brain stimulation, which, also, for Parkinson’s, it’s fantastic. But they’re trying to use it for depression, and in some cases, it works so—I want to use a bad word—amazingly. Just Helen Mayberg, who runs these trials, she said that for some people, this is an option of last resort, and then they get the stimulation, and they just get back on the bus. That’s her quote. And it’s like a switch that you flip. And for other people, it doesn’t work at all.
Cass: Well the book is packed with even more fantastic stuff, and I’m sorry we don’t have time to go through it, because literally, I could sit here and talk to you all day about this.
Adee: I didn’t even get into the frog battery, but okay, that’s fine. Fine, fine skip the frog. Sorry, I’m just kidding. I’m kidding, I’m kidding.
Cass: And thank you so much, Sally, for chatting with us today.
Adee: Oh, thank you so much. I really love talking about it, especially with you.
Cass: Today on Fixing the Future, we’re talking with Sally Adee about her new book on the body’s electrome. For IEEE Spectrum I’m Stephen Cass.
Fifty years ago, on 14 May 1973, a modified Saturn V rocket launched from the Kennedy Space Center carrying Skylab, the United States’ first space station. Six years later, in the early hours of 12 July 1979, Skylab reentered Earth’s atmosphere in a fiery blaze, spreading debris across the Indian Ocean and Western Australia. More than a decade later, a rancher found this end cap from one of Skylab’s oxygen tanks in the dirt. Cattle were drinking collected rainwater from the remains of a US $2.2 billion NASA investment.
Skylab’s fate was sealed moments after lift-off when the sun shield and main solar panel were severely damaged, making it questionable whether the spacecraft could fulfill its multiple planned missions. Without the sun shield, which also protected against small meteoroid damage, the internal temperature of the module would rise to uninhabitable temperatures. The damaged solar panels could not generate enough electricity to power the space station.
Skylab’s sun shield, shown here dangling by a thin strap, was damaged during launch. NASA
Skylab launched as a single, two-story unit that combined living quarters with a workshop. It included hundreds of science experiments, a solar observatory, and even a device for taking in-flight showers. The human crew was scheduled to go up a day after the spacecraft. Within hours of the Skylab failure, NASA delayed that crewed mission, as engineers hustled to assess the damage and suggest repairs. The space agency had only a short window of opportunity to salvage the mission. As the cabin overheated, food would begin to spoil, photographic film would be damaged, and materials would begin to break down and off-gas, making the air unbreathable.
NASA engineer Jack Kinzler suggested a solar shield designed like an umbrella that could be deployed through a 20-centimeter-square port hole near the site of the damage and then opened up to provide shade. Once the proof of concept was approved, engineers raced against time to manufacture the device while the Skylab crew began training on how to make the necessary repairs.
Eleven days later, on 25 May 1973, Commander Charles “Pete” Conrad Jr., Science Pilot Joseph Kerwin (the first medical doctor in space), and Pilot Paul Weitz finally headed to the space station. After orbiting Skylab in an Apollo Command and Service Module to visualize the damage, Weitz prepared for an EVA, or extravehicular activity. While Kerwin held his legs, Weitz stood through an open hatch and attempted to free the damaged solar array by hooking it with a 3-meter pole. This didn’t work. Conrad then attempted to hard dock with Skylab, but the latches wouldn’t catch. He tried again and again and again. After eight failed attempts, the crew resorted to the backup emergency docking procedure, which they had practiced only once on Earth. It worked.
Emergency repairs to Skylab included a replacement solar parasol [left] that was deployed through an airlock [rectangular opening, right].NASA
They then deployed Kinzler’s solar parasol, and within hours the cabin temperature inside Skylab was falling to habitable levels. Two weeks later, Conrad and Kerwin performed a second EVA that removed debris from the main solar array and allowed it to open. Enough power was restored that two more Skylab missions could be completed.
Skylab 3 included Owen Garriott, the first electrical engineer in Space. IEEE Spectrum interviewed him right after his mission and again in 2009. In reading his 1974 interview nearly 50 years removed from the event, I was struck by his description of his role as a scientist/observer of the sun. Running experiments on Skylab, he noted, required decision-making based on interpretation—to, say, select the appropriate instrument settings and optimum mode of operation for a given experiment. It was a nice reminder that there is a subtle art to doing great science.
On 8 February 2019, the 45th anniversary of the return of the last Skylab crew to Earth, the documentary Searching for Skylab: America’s Forgotten Triumph premiered at the U.S. Space and Rocket Center in Huntsville, Ala. Directed by Dwight Steven-Boniecki, the film makes extensive use of archival video, punctuated by interviews with astronauts, engineers, and their families. Searching for Skylab focuses on the initial launch and the scramble to save the mission, but it also highlights some of the science experiments conducted while in space.
I found the clips of middle and high school students describing their proposed Skylab experiments to be quite poignant. They were so hopeful and earnest, but the overheated cabinet ruined a handful of the plant-based studies.
Of course, sometimes new opportunities unexpectedly present themselves. The Skylab 3 crew happened to be in place to view—and sketch—Kohoutek, or the Christmas Comet. This was the first time that humans observed a comet from space.
Skylab’s reentry in 1979 triggered a wave of memorabilia commemorating the event, including this T-shirt.
Ray Dunakin
In February 1974, when the third Skylab crew powered down the space station and departed, they left with the hope that other astronauts would follow. The damage to the solar panels meant that Skylab’s orbit would eventually decay, but NASA’s initial calculations had it in space through early 1983. This would provide overlap with the startup of the new space shuttle program and possible efforts to boost Skylab’s orbit. As late as 1978, a NASA news release touted the promise of using Skylab as living and working quarters for shuttle missions or a convenient work platform for fabrication and construction of additional structures in space. But the shuttle program was delayed, and unusual solar activity affected Skylab’s solar charging. Skylab was not going to make it.
As it became clear that Skylab was going to reenter the Earth’s atmosphere, betting on the timing and location of impact became international news. NASA did its best to ensure that pieces of the 76.5-tonne structure didn’t crash into densely populated areas, by firing the booster rockets one last time to alter its final path. Although the heaviest fragments of the station fell into the Indian Ocean, debris scattered across the state of Western Australia from the coastal town of Esperance, across the Nullarbor Plain—a flat desert on the Great Australian Bight— to the town of Balladonia.
Early relic hunters scavenged the area for bits of Skylab. The largest pieces ended up in museums, including what’s now the Esperance Museum. But the debris field encompassed thousands of square kilometers of a sparsely populated region, and some items took longer to be discovered.
In the early 1990s, a stockman noticed cattle drinking at a place where no water should have been available. He went to investigate and discovered the Skylab fragment pictured at top. It was part of Skylab’s large, cylindrical oxygen tanks, which had broken into two pieces on impact. The larger piece found its way to the Esperance Museum, but the smaller piece remained undiscovered until the curious stockman uncovered it. The curved shape formed a shallow dish to collect rainwater, making it perhaps the most expensive water bowl ever.
Commemorative objects like the Skylab Protective Helmet help capture the spirit of the times.Jeffrey Hall
In the weeks leading up to Skylab’s reentry, a cottage industry of commemorative memorabilia emerged. Bob Smith, the owner of a custom silk-screening shop in Lemon Grove, Calif., got in on the action. He asked his art director, Ray Dunakin, to do something wacky with a guy wearing an old helmet and holding a steel umbrella. In an email, Dunakin told me that the resulting T-shirt became one of their most popular designs, selling thousands. Smith convinced a local TV station to send a camera crew and reporter to cover the printing process. The reporter got a human-interest story, and Smith got free advertising.
Although Dunakin had always been interested in space exploration and had followed all of the NASA launches, the Skylab T-shirt was simply a job very early in his career. He had previously done some freelance airbrush art, but working for Smith was Dunakin’s first full-time job as a graphic designer. He was shocked when one of the shirts resurfaced more than 40 years later on an online resale site, along with a hefty markup in price.
The do-it-yourself Skylab Protective Helmet promised users it would “do you absolutely no good at all!”
Jeffrey Hall
Another young man who tried to cash in on the Skylab hoopla was Jeffrey Hall. At the age of 26, he founded Seat-of-the-Pants Management, which specialized in novelty gifts. In honor of Skylab’s demise, he manufactured Skylab Protective Helmets. The do-it-yourself paper hats came with the following manufacturer’s guarantee: “Should Skylab actually fall on you, your Skylab Protective Helmet will not prevent ‘splitting headaches.’ In fact, it will do you absolutely no good at all!” Hall took orders for approximately 20,000 of these at $2 apiece, but didn’t make a profit. Once Skylab crashed, a number of buyers refused to pay. Hall learned the hard lesson that he should have charged up front.
Commemorative items such as T-shirts and paper hats are often intended to be ephemeral—they exist in the moment to capture the spirit of the time. But sometimes they get stored away in basements, attics, and even museums only to emerge decades later as useful artifacts for historians to study and the public to reflect on a shared past.
Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology.
An abridged version of this article appears in the May 2023 print issue as “Skylab’s Great Fall.”
![]() |
Imagine a world in which you can do transactions and many other things without having to give your personal information. A world in which you don’t need to rely on banks or governments anymore. Sounds amazing, right? That’s exactly what blockchain technology allows us to do.
It’s like your computer’s hard drive. blockchain is a technology that lets you store data in digital blocks, which are connected together like links in a chain.
Blockchain technology was originally invented in 1991 by two mathematicians, Stuart Haber and W. Scot Stornetta. They first proposed the system to ensure that timestamps could not be tampered with.
A few years later, in 1998, software developer Nick Szabo proposed using a similar kind of technology to secure a digital payments system he called “Bit Gold.” However, this innovation was not adopted until Satoshi Nakamoto claimed to have invented the first Blockchain and Bitcoin.
A blockchain is a distributed database shared between the nodes of a computer network. It saves information in digital format. Many people first heard of blockchain technology when they started to look up information about bitcoin.
Blockchain is used in cryptocurrency systems to ensure secure, decentralized records of transactions.
Blockchain allowed people to guarantee the fidelity and security of a record of data without the need for a third party to ensure accuracy.
To understand how a blockchain works, Consider these basic steps:
Let’s get to know more about the blockchain.
Blockchain records digital information and distributes it across the network without changing it. The information is distributed among many users and stored in an immutable, permanent ledger that can't be changed or destroyed. That's why blockchain is also called "Distributed Ledger Technology" or DLT.
Here’s how it works:
And that’s the beauty of it! The process may seem complicated, but it’s done in minutes with modern technology. And because technology is advancing rapidly, I expect things to move even more quickly than ever.
Even though blockchain is integral to cryptocurrency, it has other applications. For example, blockchain can be used for storing reliable data about transactions. Many people confuse blockchain with cryptocurrencies like bitcoin and ethereum.
Blockchain already being adopted by some big-name companies, such as Walmart, AIG, Siemens, Pfizer, and Unilever. For example, IBM's Food Trust uses blockchain to track food's journey before reaching its final destination.
Although some of you may consider this practice excessive, food suppliers and manufacturers adhere to the policy of tracing their products because bacteria such as E. coli and Salmonella have been found in packaged foods. In addition, there have been isolated cases where dangerous allergens such as peanuts have accidentally been introduced into certain products.
Tracing and identifying the sources of an outbreak is a challenging task that can take months or years. Thanks to the Blockchain, however, companies now know exactly where their food has been—so they can trace its location and prevent future outbreaks.
Blockchain technology allows systems to react much faster in the event of a hazard. It also has many other uses in the modern world.
Blockchain technology is safe, even if it’s public. People can access the technology using an internet connection.
Have you ever been in a situation where you had all your data stored at one place and that one secure place got compromised? Wouldn't it be great if there was a way to prevent your data from leaking out even when the security of your storage systems is compromised?
Blockchain technology provides a way of avoiding this situation by using multiple computers at different locations to store information about transactions. If one computer experiences problems with a transaction, it will not affect the other nodes.
Instead, other nodes will use the correct information to cross-reference your incorrect node. This is called “Decentralization,” meaning all the information is stored in multiple places.
Blockchain guarantees your data's authenticity—not just its accuracy, but also its irreversibility. It can also be used to store data that are difficult to register, like legal contracts, state identifications, or a company's product inventory.
Blockchain has many advantages and disadvantages.
I’ll answer the most frequently asked questions about blockchain in this section.
Blockchain is not a cryptocurrency but a technology that makes cryptocurrencies possible. It's a digital ledger that records every transaction seamlessly.
Yes, blockchain can be theoretically hacked, but it is a complicated task to be achieved. A network of users constantly reviews it, which makes hacking the blockchain difficult.
Coinbase Global is currently the biggest blockchain company in the world. The company runs a commendable infrastructure, services, and technology for the digital currency economy.
Blockchain is a decentralized technology. It’s a chain of distributed ledgers connected with nodes. Each node can be any electronic device. Thus, one owns blockhain.
Bitcoin is a cryptocurrency, which is powered by Blockchain technology while Blockchain is a distributed ledger of cryptocurrency
Generally a database is a collection of data which can be stored and organized using a database management system. The people who have access to the database can view or edit the information stored there. The client-server network architecture is used to implement databases. whereas a blockchain is a growing list of records, called blocks, stored in a distributed system. Each block contains a cryptographic hash of the previous block, timestamp and transaction information. Modification of data is not allowed due to the design of the blockchain. The technology allows decentralized control and eliminates risks of data modification by other parties.
Blockchain has a wide spectrum of applications and, over the next 5-10 years, we will likely see it being integrated into all sorts of industries. From finance to healthcare, blockchain could revolutionize the way we store and share data. Although there is some hesitation to adopt blockchain systems right now, that won't be the case in 2022-2023 (and even less so in 2026). Once people become more comfortable with the technology and understand how it can work for them, owners, CEOs and entrepreneurs alike will be quick to leverage blockchain technology for their own gain. Hope you like this article if you have any question let me know in the comments section
FOLLOW US ON TWITTER
Donald Trump’s latest charges are just the beginning of his legal woes, but Republicans are standing by their man.
The post How Many Indictments Does It Take to Bring Down a Cult Leader? appeared first on The Intercept.
Indictment accuses former president of risking national security, foreign relations, safety of US military and intelligence gathering
The US senate judiciary committee chairman, Dick Durbin, has said the investigation led by special counsel Jack Smith should be allowed to continue “without interference”.
In a statement on Friday, Durbin added that Donald Trump “should be afforded the due process protections that he is guaranteed by our constitution, just like any other American”.
I think before the sun sets today, the attorney general of the United States should be standing in front of the American people, should unseal this indictment, should provide the American people with all the facts and information here.
And the American people be able to judge for themselves whether this is just the latest incident of weaponization and politicization at the justice department or it’s something different.
Continue reading...Shares of 3M Co. MMM dropped 1.2% in afternoon trading Friday, after the maker of Post-it Notes, Scotch Tape and N95 facemasks said the Indiana bankruptcy court dismissed the bankruptcy filing of subsidiary Aearo Technologies, which made the Combat Arms earplugs that allegedly resulted in hear loss and tinnitus. Aearo, which 3M acquired in 2008, had filed for bankruptcy in July 2022 to establish a trust to resolve all claims, which could be in the billions of dollars, but lawyers for the plaintiffs filed to dismiss the bankruptcy, calling it “contrived.” On Friday, 3M and Aearo said they will pursue an appeal of the dismissal ruling, and will continue to defend the product in litigation. Bryan Aylstock, the lead plaintiffs’ counsel, said in an emailed statement to MarketWatch: “Judge Graham’s ruling rightly repudiates 3M’s cowardly attempt to delay justice for the hundreds of thousands of veterans harmed by the company’s dangerously defective earplugs. This gambit by 3M was a gross misuse of the bankruptcy courts, and we are pleased Judge Graham rightly dismissed it.” 3M’s stock has shed 17.0% year to date, to make it the worst performer in the Dow Jones Industrial Average DJIA this year.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Trauma experienced by staff at Nairobi Facebook hub recognised in legal ruling that may have global implications
Meta has been ordered to “provide proper medical, psychiatric and psychological care” to a group of moderators in Nairobi following a ruling in a Kenyan employment court that heard harrowing testimony about the distressing nature of their work.
The instruction by judge Byram Ongaya formed part of a broader interim ruling that saw the moderators’ jobs restored after they sued Meta in March for what they termed a “sham” mass redundancy.
Continue reading...Whether to pardon January 6 convicts will be the most revealing question of the Republican primary.
The post Oath Keepers Leader Stewart Rhodes Says He’s a Political Prisoner. Republicans Are Listening. appeared first on The Intercept.
The fight could influence whether Georgia stays blue in 2024’s Senate and presidential races.
The post No One Believes in Cop City. So Why Did Atlanta’s City Council Fund It? appeared first on The Intercept.
In an interview with The Intercept, the ousted Pakistani prime minister, just released from arrest, accuses the country’s military of deepening a political crisis.
The post Imran Khan: U.S. Was Manipulated by Pakistan Military Into Backing Overthrow appeared first on The Intercept.
Opposition leaders have begun to plan for the end of the regime – and some believe it is now inevitable
Is Russia about to experience a period of dramatic political change? If so, can exiled democratic forces unite into a coherent bloc, and is there any way for them to force themselves on to the political scene?
Nearly 300 exiled Russian opposition politicians and activists gathered to discuss these questions in the European parliament earlier this week, the congress coming as news broke of the Nova Kakhovka dam destruction, the latest grim episode in Vladimir Putin’s war on Ukraine.
Continue reading...Agatha Christie explains why Donald Trump is the first president to be indicted.
The post Trump’s Mistake Was Committing Small Crimes by Himself appeared first on The Intercept.
![]() | submitted by /u/Global_Informant [link] [comments] |
Britain’s health is a national scandal, not just because of the state of the NHS, but because the government refuses to take action on our diets
In April 1994, the CEOs of the US’s seven biggest tobacco companies swore on oath before a Senate committee that nicotine was “not addictive”. At the time it was estimated that 3,000 American children were being induced by said companies to start smoking every day.
Last Monday, the BBC’s Panorama programme came close to repeating that scene with Britain’s food manufacturers. The products at issue are ultra-processed foods (UPF). Their makers’ denial of the harm these products may cause is as adamant as those tobacco execs’ once was, and the consequences could be equally lethal.
Simon Jenkins is a Guardian columnist
Continue reading...A prominent set of progressive leaders are coming to the defense of Colombia’s Gustavo Petro, whose administration is facing a cascading series of struggles.
The post Group of Global Leftist Leaders Warns “Soft Coup” Is Underway in Colombia appeared first on The Intercept.
A growing number of countries are preparing to shift from using the U.S. dollar in trade, which could undermine the greenback’s global supremacy.
The post Monetary Blowback: How U.S. Wars, Sanctions, and Hegemony Are Threatening the Dollar’s Reserve Currency Dominance appeared first on The Intercept.
In 2013 and 2014, I wrote extensively about new revelations regarding NSA surveillance based on the documents provided by Edward Snowden. But I had a more personal involvement as well.
I wrote the essay below in September 2013. The New Yorker agreed to publish it, but the Guardian asked me not to. It was scared of UK law enforcement, and worried that this essay would reflect badly on it. And given that the UK police would raid its offices in July 2014, it had legitimate cause to be worried.
Now, ten years later, I offer this as a time capsule of what those early months of Snowden were like...
The definition conflates criticism of Israel with antisemitism. A new report details how it’s been used to justify punitive action against Palestine advocates in Europe.
The post Biden Embraces Antisemitism Definition That Has Upended Free Speech in Europe appeared first on The Intercept.
Democrats and Republicans have previously joined hands to support the invasion of Iraq, huge corporate tax cuts, and more.
The post The Debt Limit Bill: Yet Another Triumph for Bipartisanship appeared first on The Intercept.
A raft of states are looking to restrict property purchases by citizens of U.S. adversaries like China and Iran. Democrats in Washington are pushing back.
The post U.S. Lawmakers Seek to Preempt State-Level Bans on Foreigners Buying Property appeared first on The Intercept.
Political messaging expert Anat Shenker-Osorio breaks down the art of reframing the debate for progressives to win.
The post A Dmitri Rebuttal by Messaging Expert Anat Shenker-Osorio appeared first on The Intercept.
First-year college students are understandably frustrated when they can’t get into popular upper-level electives. But they usually just gripe. Paras Jha was an exception. Enraged that upper-class students were given priority to enroll in a computer-science elective at Rutgers, the State University of New Jersey, Paras decided to crash the registration website so that no one could enroll.
On Wednesday night, 19 November 2014, at 10:00 p.m. EST—as the registration period for first-year students in spring courses had just opened—Paras launched his first distributed denial-of-service (DDoS) attack. He had assembled an army of some 40,000 bots, primarily in Eastern Europe and China, and unleashed them on the Rutgers central authentication server. The botnet sent thousands of fraudulent requests to authenticate, overloading the server. Paras’s classmates could not get through to register.
The next semester Paras tried again. On 4 March 2015, he sent an email to the campus newspaper, The Daily Targum: “A while back you had an article that talked about the DDoS attacks on Rutgers. I’m the one who attacked the network.… I will be attacking the network once again at 8:15 pm EST.” Paras followed through on his threat, knocking the Rutgers network offline at precisely 8:15 p.m.
On 27 March, Paras unleashed another assault on Rutgers. This attack lasted four days and brought campus life to a standstill. Fifty thousand students, faculty, and staff had no computer access from campus.
On 29 April, Paras posted a message on Pastebin, a website popular with hackers for sending anonymous messages. “The Rutgers IT department is a joke,” he taunted. “This is the third time I have launched DDoS attacks against Rutgers, and every single time, the Rutgers infrastructure crumpled like a tin can under the heel of my boot.”
Paras was furious that Rutgers chose Incapsula, a small cybersecurity firm based in Massachusetts, as its DDoS-mitigation provider. He claimed that Rutgers chose the cheapest company. “Just to show you the poor quality of Incapsula’s network, I have gone ahead and decimated the Rutgers network (and parts of Incapsula), in the hopes that you will pick another provider that knows what they are doing.”
Paras’s fourth attack on the Rutgers network, taking place during finals, caused chaos and panic on campus. Paras reveled in his ability to shut down a major state university, but his ultimate objective was to force it to abandon Incapsula. Paras had started his own DDoS-mitigation service, ProTraf Solutions, and wanted Rutgers to pick ProTraf over Incapsula. And he wasn’t going to stop attacking his school until it switched.
Paras Jha was born and raised in Fanwood, a leafy suburb in central New Jersey. When Paras was in the third grade, a teacher recommended that he be evaluated for attention deficit hyperactivity disorder, but his parents didn’t follow through.
As Paras progressed through elementary school, his struggles increased. Because he was so obviously intelligent, his teachers and parents attributed his lackluster performance to laziness and apathy. His perplexed parents pushed him even harder.
Paras sought refuge in computers. He taught himself how to code when he was 12 and was hooked. His parents happily indulged this passion, buying him a computer and providing him with unrestricted Internet access. But their indulgence led Paras to isolate himself further, as he spent all his time coding, gaming, and hanging out with his online friends.
Paras was particularly drawn to the online game Minecraft. In ninth grade, he graduated from playing Minecraft to hosting servers. It was in hosting game servers that he first encountered DDoS attacks.
Minecraft server administrators often hire DDoS services to knock rivals offline. As Paras learned more sophisticated DDoS attacks, he also studied DDoS defense. As he became proficient in mitigating attacks on Minecraft servers, he decided to create ProTraf Solutions.
Paras’s obsession with Minecraft attacks and defense, compounded by his untreated ADHD, led to an even greater retreat from family and school. His poor academic performance in high school frustrated and depressed him. His only solace was Japanese anime and the admiration he gained from the online community of Minecraft DDoS experts.
Paras’s struggles deteriorated into paralysis when he enrolled in Rutgers, studying for a B.S. in computer science. Without his mother’s help, he was unable to regulate the normal demands of living on his own. He could not manage his sleep, schedule, or study. Paras was also acutely lonely. So he immersed himself in hacking.
Paras and two hacker friends, Josiah White and Dalton Norman, decided to go after the kings of DDoS—a gang known as VDoS. The gang had been providing these services to the world for four years, which is an eternity in cybercrime. The decision to fight experienced cybercriminals may seem brave, but the trio were actually older than their rivals. The VDoS gang members had been only 14 years old when they started to offer DDoS services from Israel in 2012. These 19-year-old American teenagers would be going to battle against two 18-year-old Israeli teenagers. The war between the two teenage gangs would not only change the nature of malware. Their struggle for dominance in cyberspace would create a doomsday machine.
The Mirai botnet, with all its devastating potential, was not the product of an organized-crime or nation-state hacking group—it was put together by three teenage boys. They rented out their botnet to paying customers to do mischief with and used it to attack chosen targets of their own. But the full extent of the danger became apparent only later, after this team made the source code for their malware public. Then others used it to do greater harm: crashing Germany’s largest Internet service provider; attacking Dyn’s Domain Name System servers, making the Internet unusable for millions; and taking down all of Liberia’s Internet—to name a few examples.
The Mirai botnet exploited vulnerable Internet of Things devices, such as Web-connected video cameras, ones that supported Telnet, an outdated system for logging in remotely. Owners of these devices rarely updated their passwords, so they could be easily guessed using a strategy called a dictionary attack.
The first step in assembling a botnet was to scan random IP addresses looking for vulnerable IoT devices, ones whose passwords could be guessed. Once identified, the addresses of these devices were passed to a “loader,” which would put the malware on the vulnerable device. Infected devices located all over the world could then be used for distributed denial-of-service attacks, orchestrated by a command-and-control (C2) server. When not attacking a target, these bots would be enlisted to scan for more vulnerable devices to infect.
Botnet malware is useful for financially motivated crime because botmasters can tell the bots in their thrall to implant malware on vulnerable machines, send phishing emails, or engage in click fraud, in which botnets profit by directing bots to click pay-per-click ads. Botnets are also great DDoS weapons because they can be trained on a target and barrage it from all directions. One day in February 2000, for example, the hacker MafiaBoy knocked out Fifa.com, Amazon.com, Dell, E-Trade, eBay, CNN, as well as Yahoo, at the time the largest search engine on the Internet.
After taking so many major websites offline, MafiaBoy was deemed a national -security threat. President Clinton ordered a national manhunt to find him. In April 2000, MafiaBoy was arrested and charged, and in January 2001 he pled guilty to 58 charges of denial-of-service attacks. Law enforcement did not reveal MafiaBoy’s real name, as this national-security threat was 15 years old.
Both MafiaBoy and the VDoS crew were adolescent boys who crashed servers. But whereas MafiaBoy did it for the sport, VDoS did it for the money. Indeed, these teenage Israeli kids were pioneering tech entrepreneurs. They helped launch a new form of cybercrime: DDoS as a service. With it, anyone could now hack with the click of a button, no technical knowledge needed.
It might be surprising that DDoS providers could advertise openly on the Web. After all, DDoSing another website is illegal everywhere. To get around this, these “booter services” have long argued they perform a legitimate function: providing those who set up Web pages a means to stress test websites.
In theory, such services do play an important function. But only in theory. As a booter-service provider admitted to University of Cambridge researchers, “We do try to market these services towards a more legitimate user base, but we know where the money comes from.”
Paras dropped out of Rutgers in his sophomore year and, with his father’s encouragement, spent the next year focused on building ProTraf Solutions, his DDoS-mitigation business. And just like a mafia don running a protection racket, he had to make that protection needed. After launching four DDoS attacks his freshman year, he attacked Rutgers yet again in September 2015, still hoping that his former school would give up on Incapsula. Rutgers refused to budge.
ProTraf Solutions was failing, and Paras needed cash. In May 2016, Paras reached out to Josiah White. Like Paras, Josiah frequented Hack Forums. When he was 15, he developed major portions of Qbot, a botnet worm that at its height in 2014 had enslaved half a million computers. Now 18, Josiah switched sides and worked with his friend Paras at ProTraf doing DDoS mitigation.
The hacker’s command-and-control (C2) server orchestrates the actions of many geographically distributed bots (computers under its control). Those computers, which could be IoT devices like IP cameras, can be directed to overwhelm the victim’s servers with unwanted traffic, making them unable to respond to legitimate requests.
IEEE Spectrum
But Josiah soon returned to hacking and started working with Paras to take the Qbot malware, improve it, and build a bigger, more powerful DDoS botnet. Paras and Josiah then partnered with 19-year-old Dalton Norman. The trio turned into a well-oiled team: Dalton found the vulnerabilities; Josiah updated the botnet malware to exploit these vulnerabilities; and Paras wrote the C2—software for the command-and-control server—for controlling the botnet.
But the trio had competition. Two other DDoS gangs—Lizard Squad and VDoS—decided to band together to build a giant botnet. The collaboration, known as PoodleCorp, was successful. The amount of traffic that could be unleashed on a target from PoodleCorp’s botnet hit a record value of 400 gigabits per second, almost four times the rate that any previous botnet had achieved. They used their new weapon to attack banks in Brazil, U.S. government sites, and Minecraft servers. They achieved this firepower by hijacking 1,300 Web-connected cameras. Web cameras tend to have powerful processors and good connectivity, and they are rarely patched. So a botnet that harnesses video has enormous cannons at its disposal.
While PoodleCorp was on the rise, Paras, Josiah, and Dalton worked on a new weapon. By the beginning of August 2016, the trio had completed the first version of their botnet malware. Paras called the new code Mirai, after the anime series Mirai Nikki.
When Mirai was released, it spread like wildfire. In its first 20 hours, it infected 65,000 devices, doubling in size every 76 minutes. And Mirai had an unwitting ally in the botnet war then raging.
Up in Anchorage, Alaska, the FBI cyber unit was building a case against VDoS. The FBI was unaware of Mirai or its war with VDoS. The agents did not regularly read online boards such as Hack Forums. They did not know that the target of their investigation was being decimated. The FBI also did not realize that Mirai was ready to step into the void.
The head investigator in Anchorage was Special Agent Elliott Peterson. A former U.S. Marine, Peterson is a calm and self-assured agent with a buzz cut of red hair. At the age of 33, Peterson had returned to his native state of Alaska to prosecute cybercrime.
On 8 September 2016, the FBI’s Anchorage and New Haven cyber units teamed up and served a search warrant in Connecticut on the member of PoodleCorp who ran the C2 that controlled all its botnets. On the same day, the Israeli police arrested the VDoS founders in Israel. Suddenly, PoodleCorp was no more.
The Mirai group waited a couple of days to assess the battlefield. As far as they could tell, they were the only botnet left standing. And they were ready to use their new power. Mirai won the war because Israeli and American law enforcement arrested the masterminds behind PoodleCorp. But Mirai would have triumphed anyway, as it was ruthlessly efficient in taking control of Internet of Things devices and excluding competing malware.
A few weeks after the arrests of those behind VDoS, Special Agent Peterson found his next target: the Mirai botnet. In the Mirai case, we do not know the exact steps that Peterson’s team took in their investigation: Court orders in this case are currently “under seal,” meaning that the court deems them secret. But from public reporting, we know that Peterson’s team got its break in the usual way—from a Mirai victim: Brian Krebs, a cybersecurity reporter whose blog was DDoSed by the Mirai botnet on 25 September.
The FBI uncovered the IP address of the C2 and loading servers but did not know who had opened the accounts. Peterson’s team likely subpoenaed the hosting companies to learn the names, emails, cellphones, and payment methods of the account holders. With this information, it would seek court orders and then search warrants to acquire the content of the conspirators’ conversations.
Still, the hunt for the authors of the Mirai malware must have been a difficult one, given how clever these hackers were. For example, to evade detection Josiah didn’t just use a VPN. He hacked the home computer of a teenage boy in France and used his computer as the “exit node.” The orders for the botnet, therefore, came from this computer. Unfortunately for the owner, he was a big fan of Japanese anime and thus fit the profile of the hacker. The FBI and the French police discovered their mistake after they raided the boy’s house.
After wielding its power for two months, Paras dumped nearly the complete source code for Mirai on Hack Forums. “I made my money, there’s lots of eyes looking at IOT now, so it’s time to GTFO [Get The F*** Out],” Paras wrote. With that code dump, Paras had enabled anyone to build their own Mirai. And they did.
Dumping code is reckless, but not unusual. If the police find source code on a hacker’s devices, they can claim that they “downloaded it from the Internet.” Paras’s irresponsible disclosure was part of a false-flag operation meant to throw off the FBI, which had been gathering evidence indicating Paras’s involvement in Mirai and had contacted him to ask questions. Though he gave the agent a fabricated story, getting a text from the FBI probably terrified him.
Mirai had captured the attention of the cybersecurity community and of law enforcement. But not until after Mirai’s source code dropped would it capture the attention of the entire United States. The first attack after the dump was on 21 October, on Dyn, a company based in Manchester, N.H., that provides Domain Name System (DNS) resolution services for much of the East Coast of the United States.
Mike McQuade
It began at 7:07 a.m. EST with a series of 25-second attacks, thought to be tests of the botnet and Dyn’s infrastructure. Then came the sustained assaults: of one hour, and then five hours. Interestingly, Dyn was not the only target. Sony’s PlayStation video infrastructure was also hit. Because the torrents were so immense, many other websites were affected. Domains such as cnn.com, facebook.com, and nytimes.com wouldn’t work. For the vast majority of these users, the Internet became unusable. At 7:00 p.m., another 10-hour salvo hit Dyn and PlayStation.
Further investigations confirmed the point of the attack. Along with Dyn and PlayStation traffic, the botnet targeted Xbox Live and Nuclear Fallout game-hosting servers. Nation-states were not aiming to hack the upcoming U.S. elections. Someone was trying to boot players off their game servers. Once again—just like MafiaBoy, VDoS, Paras, Dalton, and Josiah—the attacker was a teenage boy, this time a 15-year-old in Northern Ireland named Aaron Sterritt.
Meanwhile, the Mirai trio left the DDoS business, just as Paras said. But Paras and Dalton did not give up on cybercrime. They just took up click fraud.
Click fraud was more lucrative than running a booter service. While Mirai was no longer as big as it had been, the botnet could nevertheless generate significant advertising revenue. Paras and Dalton earned as much money in one month from click fraud as they ever made with DDoS. By January 2017, they had earned over US $180,000, as opposed to a mere $14,000 from DDoSing.
Had Paras and his friends simply shut down their booter service and moved on to click fraud, the world would likely have forgotten about them. But by releasing the Mirai code, Paras created imitators. Dyn was the first major copycat attack, but many others followed. And due to the enormous damage these imitators wrought, law enforcement was intensely interested in the Mirai authors.
After collecting information tying Paras, Josiah, and Dalton to Mirai, the FBI quietly brought each up to Alaska. Peterson’s team showed the suspects its evidence and gave them the chance to cooperate. Given that the evidence was irrefutable, each folded.
Paras Jha was indicted twice, once in New Jersey for his attack on Rutgers, and once in Alaska for Mirai. Both indictments carried the same charge—one violation of the Computer Fraud and Abuse Act. Paras faced up to 10 years in federal prison for his actions. Josiah and Dalton were only indicted in Alaska and so faced 5 years in prison.
The trio pled guilty. At the sentencing hearing held on 18 September 2018, in Anchorage, each of the defendants expressed remorse for his actions. Josiah White’s lawyer conveyed his client’s realization that Mirai was “a tremendous lapse in judgment.”
Unlike Josiah, Paras spoke directly to Judge Timothy Burgess in the courtroom. Paras began by accepting full responsibility for his actions and expressed his deep regret for the trouble he’d caused his family. He also apologized for the harm he’d caused businesses and, in particular, Rutgers, the faculty, and his fellow students.
The Department of Justice made the unusual decision not to ask for jail time. In its sentencing memo, the government noted “the divide between [the defendants’] online personas, where they were significant, well-known, and malicious actors in the DDoS criminal milieu and their comparatively mundane ‘real lives’ where they present as socially immature young men living with their parents in relative obscurity.” It recommended five years of probation and 2,500 hours of community service.
The government had one more request —for that community service “to include continued work with the FBI on cybercrime and cybersecurity matters.” Even before sentencing, Paras, Josiah, and Dalton had logged close to 1,000 hours helping the FBI hunt and shut down Mirai copycats. They contributed to more than a dozen law enforcement and research efforts. In one instance, the trio assisted in stopping a nation-state hacking group. They also helped the FBI prevent DDoS attacks aimed at disrupting Christmas-holiday shopping. Judge Burgess accepted the government’s recommendation, and the trio escaped jail time.
The most poignant moments in the hearing were Paras’s and Dalton’s singling out for praise the very person who caught them. “Two years ago, when I first met Special Agent Elliott Peterson,” Paras told the court, “I was an arrogant fool believing that somehow I was untouchable. When I met him in person for the second time, he told me something I will never forget: ‘You’re in a hole right now. It’s time you stop digging.’ ” Paras finished his remarks by thanking “my family, my friends, and Agent Peterson for helping me through this.”
This article appears in the June 2023 print issue as “Patch Me if You Can.”
Three days before astronauts left on Apollo 8, the first-ever flight around the moon, NASA’s safety chief, Jerome Lederer, gave a speech that was at once reassuring and chilling. Yes, he said, the United States’ moon program was safe and well-planned—but even so, “Apollo 8 has 5,600,000 parts and one and one half million systems, subsystems, and assemblies. Even if all functioned with 99.9 percent reliability, we could expect 5,600 defects.”
The mission, in December 1968, was nearly flawless—a prelude to the Apollo 11 landing the next summer. But even today, half a century later, engineers wrestle with the sheer complexity of the machines they build to go to space. NASA’s Artemis I, its Space Launch System rocket mandated by Congress in 2010, endured a host of delays before it finally launched in November 2022. And Elon Musk’s SpaceX may be lauded for its engineering acumen, but it struggled for six years before its first successful flight into orbit.
Relativity envisions 3D-printing facilities someday on the Martian surface, fabricating much of what people from Earth would need to live there.
Is there a better way? An upstart company called Relativity Space is about to try one. Its Terran 1 rocket, the company says, has about a tenth as many parts as comparable launch vehicles do, because it is made through 3D printing. Instead of bending metal and milling and welding, engineers program a robot to deposit layers of metal alloy in place.
Relativity’s first rocket, the company says, is ready to go from launch complex 16 at Cape Canaveral, Fla. When it happens, the company says it will stream the liftoff on YouTube.
Artist’s concept of Relativity’s planned Terran R rocket. The company says it should be able to carry a 20,000-kilogram payload into low Earth orbit.Relativity
“Over 85 percent of the rocket by mass is 3D printed,” said Scott Van Vliet, Relativity’s head of software engineering. “And what’s really cool is not only are we reducing the amount of parts and labor that go into building one of these vehicles over time, but we’re also reducing the complexity, we’re reducing the chance of failure when you reduce the part count, and you streamline the build process.”
Relativity says it can put together a Terran rocket in two months, compared to two years for some conventionally built ones. The speed and cost of making a prototype—say, for wind-tunnel testing—are reduced because you tell the printer to make a scaled-down model. There is less waste because the process is additive. And if something needs to be modified, you reprogram the 3D printer instead of slow, expensive retooling.
Investors have noticed. The company says financial backers have included BlackRock, Y Combinator and the entrepreneur Mark Cuban.
“If you walk into any rocket factory today other than ours,” said Josh Brost, the company’s head of business development, “you still will see hundreds of thousands of parts coming from thousands of vendors, and still being assembled using lots of touch labor and lots of big-fix tools.”
Terran 1 Nose Cone Timelapse Check out this timelapse of our nose cone build for Terran 1. This milestone marks the first time we’ve created this unique shape ...
Terran 1, rated as capable of putting a 1,250-kilogram payload in low Earth orbit, is mainly intended as a test bed. Relativity has signed up a variety of future customers for satellite launches, but the first Terran 1 (“Terran” means “earthling”) will not carry a paying customer’s satellite. The first flight has been given the playful name “Good Luck, Have Fun”—GLHF for short. Eventually, if things are going well, Relativity will build a larger booster, called Terran R, which the company hopes will compete with the SpaceX Falcon 9 for launches of up to 20,000 kg. Relativity says the Terran R should be fully reusable, including the upper stage—something that other commercial launch companies have not accomplished. In current renderings, the rocket is, as the company puts it, “inspired by nature,” shaped to slice through the atmosphere as it ascends and comes back for recovery.
A number of Relativity’s top people came from Musk’s SpaceX or Jeff Bezos’s space company, Blue Origin, and, like Musk, they say their vision is a permanent presence on Mars. Brost calls it “the long-term North Star for us.” They say they can envision 3D-printing facilities someday on the Martian surface, fabricating much of what people from Earth would need to live there. “For that to happen,” says Brost, “you need to have manufacturing capabilities that are autonomous and incredibly flexible.”
Relativity’s fourth-generation Stargate 3D printer.Relativity
Just how Relativity will do all these things is a work in progress. The company says its 3D technology will help it work iteratively—finding mistakes as it goes, then correcting them as it prints the next rocket, and the next, and so on.
“In traditional manufacturing, you have to do a ton of work up front and have a lot of the design features done well ahead of time,” says Van Vliet. “You have to invest in fixed tooling that can often take years to build before you’ve actually developed an article for your launch vehicle. With 3D printing, additive manufacturing, we get to building something very, very quickly.”
The next step is to get the first rocket off the pad. Will it succeed? Brost says a key test will be getting through max q—the point of maximum dynamic pressure on the rocket as it accelerates through the atmosphere before the air around it thins out.
“If you look at history, at new space companies doing large rockets, there’s not a single one that’s done their first rocket on their first try. It would be quite an achievement if we were able to achieve orbit on our inaugural launch,” says Brost.
“I’ve been to many launches in my career,” he says, “and it never gets less exciting or nerve wracking to me.”
RSS Rabbit links users to publicly available RSS entries.
Vet every link before clicking! The creators accept no responsibility for the contents of these entries.
Relevant
Fresh
Convenient
Agile
We're not prepared to take user feedback yet. Check back soon!