********** FOOD **********
return to top
Yotam Ottolenghi’s recipes for cooking with feta
Sat, 10 Jun 2023 07:00:16 GMT
A feta-filled frittata, feta-stuffed koftas with grilled peppers, and a spring salad with a buttermilk and feta dressing
I knew I was on to a good thing when my new test kitchen colleague Katja Tausig started talking about and cooking with feta. For a team whose mantra might well be “Everything’s better with feta!”, her enthusiasm, and desire to dedicate a whole column to this briny, tangy, salty cheese, meant that the fit was complete. So here’s to welcoming Katja and to celebrating feta: crumble it, bake it, blitz it, stuff with it, showcase it.
Continue reading...Newcastle-based baker makes second attempt to win over Saltash after franchise store failed
Saying that feelings run high about Greggs in Cornwall is an understatement. A local critic memorably described the company as the “devil’s spawn” when it dared to set up shop in Truro.
But the Newcastle-based baker has not been cowed and its fourth shop in the county opens in Saltash on Saturday. It is Greggs’ second attempt to win over the town, after a franchise store that opened in 2018 closed within a year.
Continue reading...The gardening pioneer Joy Larkhom changed how we grow veg and championed rocket, salad bags and pak choi. What is she growing now?
Joy Larkcom is singing the praises of sugarloaf chicory. “It’s got deep roots, its leaves form a dense, crisp heart, and it withstands drought better than lettuce,” she says. “Sadly, these rarely find their way into the seed catalogues for amateur gardeners.” Her love for this unsung salad leaf sums up Larkcom’s lifelong passion: to bring more variety to our kitchen tables and preserve genetic diversity.
Larkcom, 87, is a vegetable grower and writer famous for her influential books from The Organic Salad Garden to Grow Your Own Vegetables. Drawing from direct experience – for 30 years as an experimental market gardener in Suffolk; latterly in her garden in West Cork – her writing reads just as she speaks: authoritative yet lighthearted, combining practical, scientifically sound advice with an enthusiasm for continued learning.
Continue reading...Price and convenience are compared while taking on board the reaction of a young consumer
Children are expensive, even without a cost of living crisis to contend with. According to the Child Poverty Action Group’s most recent findings, the cost of raising a child until the age of 18 has reached £157,000 for a couple and £208,000 for lone parents.
Childcare costs can be extortionate, kids grow out of clothes in the blink of an eye, and activities such as swimming and football lessons all cost money. However, one area where parents are particularly feeling the pinch is with the price of food. The most recent official data showed that food and nonalcoholic drink prices jumped by 19% in the 12 months to April, meaning people are having to fork out more than ever to feed their children.
Continue reading...Dutiful German generosity revealed in analysis of gratuity habits in six EU countries, the UK and US
In Germany it seems to be pretty much automatic, pretty much all the time. In France and Spain it all depends – presumably on social subtleties that you have to be French or Spanish to understand. In Italy, why would you even bother?
When, and how much, to tip is a question that has been vexing visitors to Europe for as long as people have been travelling around the continent. Outside their own country, it seems even Europeans don’t know the answer.
Continue reading...The Indigenous children – one of whom was just 11 months old – are thought to have eaten food dropped by rescuers and used their own ancestral knowledge
Malnourished and covered in insect bites, four Indigenous children were rescued alive from the Colombian Amazon on Friday afternoon, 40 days after the plane they were travelling in crashed into the jungle.
In a remarkable feat of resilience, the children survived heavy storms in one of the most inhospitable parts of the country, home to predatory animals and armed groups.
Continue reading...With only a fortnight left of feijoa season in Australia, enthusiasts are snapping up the green-skinned fruits – if they can find them
Apples and oranges are the lowest hanging fruit during Australia’s autumn and winter. But this time of year is also the short, sweet season for a far more obscure crop: feijoa. The fruit, native to South America, has a green skin, an oval shape and sweet-tangy flesh that is beloved by those in the know, including New Zealanders – feijoa season is highly anticipated across the Tasman.
Feijoa (pronounced fay-joh-uh) grows well in Victoria, Tasmania, New South Wales, and the Adelaide Hills in South Australia. There are approximately two weeks remaining for this year’s season, with supply expected to come primarily from Western Australia.
Continue reading...Biogen Inc. BIIB shares rallied in the extended session late Friday following a full-day halt after the biotech company received a recommendation from a Food and Drug Administration advisory committee to approve an Alzheimer’s treatment it makes with Eisai Co. ESALF Biogen shares rallied as much as 9% after hours, after spending the regular session halted at $308.88. Eisai shares finished Friday up 9.4% at $81.03. On Friday, the FDA’s Peripheral and Central Nervous System Drugs Advisory Committee voted unanimously to recommend the companies’ drug Leqembi to treat Alzheimer’s disease. While the FDA is not bound to committee recommendations, the agency generally follows them. Approval of the drug is expected by July 6.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Eisai Co. Ltd. ESALF shares were up 9.4% Friday after advisers to the U.S. Food and Drug Administration voted unanimously in favor of the Eisai and Biogen BIIB Alzheimer’s treatment Leqembi. The panel of independent experts said that a clinical study had verified the clinical benefit of Leqembi, also known as lecanemab. The treatment got a green light under the FDA’s accelerated approval program in January. An FDA decision on traditional approval is expected by July 6. Advisory committee votes are not binding, but the FDA often follows committee recommendations. Biogen stock trading was halted Friday during the advisory committee meeting.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Māori tribes record changes to lands and oceans, with some food-gathering practices that have sustained communities for hundreds of years lost
Danny Paruru crouches at the water’s edge, letting it wash over his hand. Behind him, at the far hill-line, the sharp peaks mark out where the lands of his tribe, Te Whakatōhea, once stretched to before they were forcibly taken by the crown. In front of him the surface of the estuary ripples.
“Years ago our kaumatua [elders] were realising that we were deemed to be landless people – that we didn’t have a lot of land left, after the lands were confiscated. So they turned their eyes to the ocean,” he says. “Places around this area provided our sustenance and our survival, over many generations of our people.”
Continue reading...UN and US halt food assistance in the country, where 20 million people rely on aid, in order to investigate ‘diversion’ of supplies
Food aid to Ethiopia has been suspended after the discovery that humanitarian supplies meant for people in need were being stolen.
The UN’s World Food Programme (WFP) said on Friday that it is halting food assistance while it rolled out “enhanced safeguards and controls that will ensure humanitarian food assistance reaches targeted, vulnerable people”. It comes a day after the US Agency for International Development (USAid) said it was doing the same, after a “countrywide review” uncovered “a widespread and coordinated campaign” that was diverting food assistance from Ethiopian people.
Continue reading...Far from helping customers by absorbing soaring food costs, supermarket chiefs and shareholders are enjoying a bonanza
In recent weeks, supermarket spin doctors have been rolling out chief executives to counter Unite research that revealed how UK supermarkets are profiteering at the expense of their customers. The latest in this long line of protesting CEOs was Simon Roberts, chief executive of Sainsbury’s. He was asked on the BBC if the supermarket had been guilty of profiteering: “Absolutely not” was his strident denial. That denial lost some of its credibility this week when Sainsbury’s announced that Simon Roberts’ earnings leaped 40% last year to nearly £5m.
And there we have it. Facts will out. Roberts’ bonanza bonuses are actually a boardroom reward for the delivery of bumper profits in recent years. How else to explain it? Britain’s CEOs are never done telling us that their skyscraper salaries are index-linked to their blinding achievements delivering for shareholders.
Sharon Graham is the general secretary of Unite
Continue reading...Shares of Sientra Inc. SIEN skyrocketed 82.3% toward a seven-month high on heavy volume to pace all premarket gainers Friday after the medical aesthetics company after the U.S. Food and Drug Administration granted 510(k)-clearance for its AlloX2 Pro Tissue Expander. Trading volume ballooned to 4.2 million shares, compared with the full-day average of about 328,900 shares. The 510(k) clearance means Sientra’s device is “substantially equivalent” to another device that has been cleared for marketing. “This innovation allows the AlloX2 Pro to be labeled as MRI-conditional, making it the only tissue expander cleared in the United States for exposure to magnetic resonance imaging, an important screening tool for breast reconstruction patients,” said AlloX2 inventor Thomas McClellan. The stock has dropped 13.8% year to date through Thursday, while the S&P 500 has gained 11.8%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Britain’s health is a national scandal, not just because of the state of the NHS, but because the government refuses to take action on our diets
In April 1994, the CEOs of the US’s seven biggest tobacco companies swore on oath before a Senate committee that nicotine was “not addictive”. At the time it was estimated that 3,000 American children were being induced by said companies to start smoking every day.
Last Monday, the BBC’s Panorama programme came close to repeating that scene with Britain’s food manufacturers. The products at issue are ultra-processed foods (UPF). Their makers’ denial of the harm these products may cause is as adamant as those tobacco execs’ once was, and the consequences could be equally lethal.
Simon Jenkins is a Guardian columnist
Continue reading...Sushiro says business badly damaged by video of teenager licking soy sauce bottle and wiping saliva on passing food
A sushi chain in Japan is seeking ¥67m (£383,280) in damages from a diner who filmed himself licking a soy sauce bottle and wiping saliva on a slice of fish at one of its restaurants, part of a wave of “sushi terrorism” that scandalised the country’s budget food industry.
Sushiro, Japan’s biggest operator of revolving sushi restaurants, filed the suit with a court in Osaka, according to the Kyodo news agency, arguing that it had suffered financial losses after the incident triggered public fears over food hygiene.
Continue reading...The UN has blamed the destruction of the Kakhovka dam on Russia. What impact will the flooding have on the war in Ukraine? Dan Sabbagh reports
In the early hours of Tuesday, the Kakhovka dam in Ukraine was destroyed. The breach of the dam left 42,000 people at immediate risk of flooding, and is a blow to Ukrainian food and water supplies.
Ukraine has accused Russia, which has been in control of the dam for more than a year, of mining and blowing up the structure. Volodymyr Zelenskiy described the incident as an ‘environmental bomb of mass destruction’.
Continue reading...The powerful lights mounted on the border wall threaten the dark skies that make southern Arizona a biodiversity hotspot.
The post The Feds Have Thousands of Stadium Lights on the Border. Switching Them On Would Devastate Desert Ecosystems. appeared first on The Intercept.
A growing number of countries are preparing to shift from using the U.S. dollar in trade, which could undermine the greenback’s global supremacy.
The post Monetary Blowback: How U.S. Wars, Sanctions, and Hegemony Are Threatening the Dollar’s Reserve Currency Dominance appeared first on The Intercept.
The food we eat determines how we feel, and nothing beats a good fry-up, although in moderation of course. As we prepare for missions to the Moon and on to Mars, astronauts will be happy to hear from researchers that one staple comfort food is not out of reach, even in space: fries.
Political messaging expert Anat Shenker-Osorio breaks down the art of reframing the debate for progressives to win.
The post A Dmitri Rebuttal by Messaging Expert Anat Shenker-Osorio appeared first on The Intercept.
A weekly email bringing you our best food writing, the latest recipes, seasonal eating ideas and must-read restaurant reviews
Each week we’ll keep you up-to-date with all the food coverage from the Guardian and the Observer. We’ll send you the latest recipes from Yotam Ottolenghi, Nigel Slater, Meera Sodha and all our star cooks, stand-out food features and seasonal eating inspiration, plus restaurant reviews from Grace Dent and Jay Rayner.
Sign up below to start receiving the best of our culinary journalism in one mouth-watering weekly email.
Continue reading...At IEEE, we know that the advancement of science and technology is the engine that drives the improvement of the quality of life for every person on this planet. Unfortunately, as we are all aware, today’s world faces significant challenges, including escalating conflicts, a climate crisis, food insecurity, gender inequality, and the approximately 2.7 billion people who cannot access the Internet.
The COVID-19 pandemic exposed the digital divide like never before. The world saw the need for universal broadband connectivity for remote work, online education, telemedicine, entertainment, and social networking. Those who had access thrived while those without it struggled. As millions of classrooms moved online, the lack of connectivity made it difficult for some students to participate in remote learning. Adults who could not perform their job virtually faced layoffs or reduced work hours.
The pandemic also exposed weaknesses in the global infrastructure that supports the citizens of the world. It became even more apparent that vital communications, computing, energy, and distribution infrastructure was not always equitably distributed, particularly in less developed regions.
I had the pleasure of presenting the 2023 IEEE President’s Award to Doreen Bogdan-Martin, secretary-general of the International Telecommunication Union, on 28 March, at ITU’s headquarters in Geneva. The award recognizes her distinguished leadership at the agency and her notable contributions to the global public.
It is my honor to recognize such a transformational leader and IEEE member for her demonstrated commitment to bridging the digital divide and to ensuring connectivity that is safe, inclusive, and affordable to all.
Nearly 45 percent of global households do not have access to the Internet, according to UNESCO. A report from UNICEF estimates that nearly two-thirds of the world’s schoolchildren lack Internet access at home.
This digital divide is particularly impactful on women. who are 23 percent less likely than men to use the Internet. According to the United Nations Educational, Scientific and Cultural Organization, in 10 countries across Africa, Asia, and South America, women are between 30 percent and 50 percent less likely than men to make use of the Internet.
Even in developed countries, Internet access is often lower than one might imagine. More than six percent of the U.S. population does not have a high-speed connection. In Australia, the figure is 13 percent. Globally, just over half of households have an Internet connection, according to UNESCO. In the developed world, 87 percent are connected, compared with 47 percent in developing nations and just 19 percent in the least developed countries.
As IEEE looks to lead the development of technology to tackle climate change and empower universal prosperity, it is essential that we recognize the role that meaningful connectivity and digital technology play in the organization’s goals to support global sustainability, drive economic growth, and transform health care, education, employment, gender equality, and youth empowerment.
IEEE members around the globe are continuously developing and applying technology to help solve these problems. It is that universal passion—to improve global conditions—that is at the heart of our mission, as well as our expanding partnerships and significant activities supporting the achievement of the U.N. Sustainable Development Goals.
One growing partnership is with the International Telecommunication Union, a U.N. specialized agency that helps set policy related to information and communication technologies. IEEE Member Doreen Bogdan-Martin was elected as ITU secretary-general and took office on 1 January, becoming the first woman to lead the 155-year-old organization. Bogdan-Martin is the recipient of this year’s IEEE President’s Award [see sidebar].
IEEE and ITU share the goal of bringing the benefits of technology to all of humanity. I look forward to working closely with the U.N. agency to promote meaningful connectivity, intensify cooperation to connect the unconnected, and strengthen the alignment of digital technologies with inclusive sustainable development.
I truly believe that one of the most important applications of technology is to improve people’s lives. For those in underserved regions of the world, technology can improve educational opportunities, provide better health care, alleviate suffering, and maintain human dignity.
Technology and technologists, particularly IEEE members, have a significant role to play in shaping life on this planet. They can use their skills to develop and advance technology—from green energy to reducing waste and emissions, and from transportation electrification to digital education, health, and agriculture. As a person who believes in the power of technology to benefit humanity, I find this to be a very compelling vision for our shared future.
Please share your thoughts with me: president@ieee.org.
—SAIFUR RAHMAN
IEEE president and CEO
This article appears in the June 2023 print issue as “Connecting the Unconnected.”
Stephen Cass: Welcome to Fixing the Future, an IEEE Spectrum podcast. This episode is brought to you by IEEE Xplore, the digital library with over 6 million technical documents and free search. I’m senior editor Stephen Cass, and today I’m talking with a former Spectrum editor, Sally Adee, about her new book, We Are Electric: The New Science of Our Body’s Electrome. Sally, welcome to the show.
Sally Adee: Hi, Stephen. Thank you so much for having me.
Cass: It’s great to see you again, but before we get into exactly what you mean by the body’s electrome and so on, I see that in researching this book, you actually got yourself zapped quite a bit in a number of different ways. So I guess my first question is: are you okay?
Adee: I mean, as okay as I can imagine being. Unfortunately, there’s no experimental sort of condition and control condition. I can’t see the self I would have been in the multiverse version of myself that didn’t zap themselves. So I think I’m saying yes.
Cass: The first question I have then is what is an electrome?
Adee: So the electrome is this word, I think, that’s been burbling around the bioelectricity community for a number of years. The first time it was committed to print is a 2016 paper by this guy called Arnold De Loof, a researcher out in Europe. But before that, a number of the researchers I spoke to for this book told me that they had started to see it in papers that they were reviewing. And I think it wasn’t sort of defined consistently always because there’s this idea that seems to be sort of bubbling to the top, bubbling to the surface, that there are these electrical properties that the body has, and they’re not just epiphenomena, and they’re not just in the nervous system. They’re not just action potentials, but that there are electrical properties in every one of our cells, but also at the organ level, potentially at the sort of entire system level, that people are trying to figure out what they actually do.
And just as action potentials aren’t just epiphenomena, but actually our control mechanisms, they’re looking at how these electrical properties work in the rest of the body, like in the cells, membrane voltages and skin cells, for example, are involved in wound healing. And there’s this idea that maybe these are an epigenetic variable that we haven’t been able to conscript yet. And there’s such promise in it, but a lot of the research, the problem is that a lot of the research is being done across really far-flung scientific communities, some in developmental biology, some of it in oncology, a lot of it in neuroscience, obviously. But what this whole idea of the electrome is— I was trying to pull this all together because the idea behind the book is I really want people to just develop this umbrella of bioelectricity, call it the electrome, call it bioelectricity, but I kind of want the word electrome to do for bioelectricity research what the word genome did for molecular biology. So that’s basically the spiel.
Cass: So I want to surf back to a couple points you raised there, but first off, just for people who might not know, what is an action potential?
Adee: So the action potential is the electrical mechanism by which the nervous signal travels, either to actuate motion at the behest of your intent or to gain sensation and sort of perceive the world around you. And that’s the electrical part of the electrochemical nervous impulse. So everybody knows about neurotransmitters at the synapse and— well, not everybody, but probably Spectrum listeners. They know about the serotonin that’s released and all these other little guys. But the thing is you wouldn’t be able to have that release without the movement of charged particles called ions in and out of the nerve cell that actually send this impulse down and allow it to travel at a rate of speed that’s fast enough to let you yank your hand away from a hot stove when you’ve touched it, before you even sort of perceive that you did so.
Cass: So that actually brings me to my next question. So you may remember in some Spectrum‘s editorial meetings when we were deciding if a tech story was for us or not, that literally, we would often ask, “Where is the moving electron? Where is the moving electron?” But bioelectricity is not really based on moving electrons. It’s based on these ions.
Yeah. So let’s take the neuron as an example. So what you’ve got is— let me do like a— imagine a spherical cow for a neuron, okay? So you’ve got a blob and it’s a membrane, and that separates the inside of your cell from the outside of your cell. And this membrane is studded with tens of thousands, I think, little pores called ion channels. And the pores are not just sieve pores. They’re not inert. They’re really smart. And they decide which ions they like. Now, let’s go to the ions. Ions are suffusing your extracellular fluid, all the stuff that bathes you. It’s basically the reason they say you’re 66 percent water or whatever. This is like sieve water. It’s got sodium, potassium, calcium, etc., and these ions are charged particles.
So when you’ve got a cell, it likes potassium, the neuron, it likes potassium, it lets it in. It doesn’t really like sodium so much. It’s got very strong preferences. So in its resting state, which is its happy place, those channels allow potassium ions to enter. And those are probably where the electrons are, actually, because an ion, it’s got a plus-one charge or a minus-one charge based on— but let’s not go too far into it. But basically, the cell allows the potassium to come inside, and its resting state, which is its happy place, the separation of the potassium from the sodium causes, for all sorts of complicated reasons, a charge inside the cell that is minus 70 degree— sorry, minus 70 millivolts with respect to the extracellular fluid.
Cass: Before I read your book, I kind of had the idea that how neurons use electricity was, essentially, settled science, very well understood, all kind of squared away, and this was how the body used electricity. But even when it came to neurons, there’s a lot of fundamentals, kind of basic things about how neurons use electricity that we really only established relatively recently. Some of the research you’re talking about is definitely not a century-old kind of basic science about how these things work.
Adee: No, not at all. In fact, there was a paper released in 2018 that I didn’t include, which I’m really annoyed by. I just found it recently. Obviously, you can’t find all the papers. But it’s super interesting because it blends that whole sort of ionic basis of the action potential with another thing in my book that’s about how cell development is a little bit like a battery getting charged. Do you know how cells assume an electrical identity that may actually be in charge of the cell fate that they meet? And so we know abou— sorry, the book goes into more detail, but it’s like when a cell is stem or a fertilized egg, it’s depolarized. It’s at zero. And then when it becomes a nerve cell, it goes to that minus 70 that I was talking about before. If it becomes a fat cell, it’s at minus 50. If it’s musculoskeletal tissue, it goes to minus 90. Liver cells are like around minus 40. And so you’ve got real identitarian diversity, electrical diversity in your tissues, which has something to do with what they end up doing in the society of cells. So this paper that I was talking about, the 2018 paper, they actually looked at neurons. This was work from Denis Jabaudon at the University of Geneva, and they were looking at how neurons actually differentiate. Because when baby neurons are born-- your brain is made of all kinds of cells. It’s not just cortical cells. There’s staggering variety of classes of neurons. And as cells actually differentiate, you can watch their voltage change, just like you can do in the rest of the body with these electrosensitive dyes. So that’s an aspect of the brain that we hadn’t even realized until 2018.
Cass: And that all leads me to my next point, which is if you think bioelectricity, we think, okay, nerves zapping around. But neurons are not the only bioelectric network in the body. So talk about some of the other sorts of electrical networks we have, completely, or are largely separate from our neural networks?
Adee: Well, so Michael Levin is a professor at Tufts University. He does all kinds of other stuff, but mainly, I guess, he’s like the Paul Erdos of bioelectricity, I like to call him, because he’s sort of the central node. He’s networked into everybody, and I think he’s really trying to, again, also assemble this umbrella of bioelectricity to study this all in the aggregate. So his idea is that we are really committed to this idea of bioelectricity being in charge of our sort of central communications network, the way that we understand the environment around us and the way that we understand our ability to move and feel within it. But he thinks that bioelectricity is also how— that the nervous system kind of hijacked this mechanism, which is way older than any nervous system. And he thinks that we have another underlying network that is about our shape, and that this is bioelectrically mediated in really important ways, which impacts development, of course, but also wound healing. Because if you think about the idea that your body understands its own shape, what happens when you get a cut? How does it heal it? It has to go back to some sort of memory of what its shape is in order to heal it over. In animals that regenerate, they have a completely different electrical profile after they’ve been—so after they’ve had an arm chopped off.
So it’s a very different electrical— yeah, it’s a different electrical process that allows a starfish to regrow a limb than the one that allows us to scar over. So you’ve got this thing called a wound current. Your skin cells are arranged in this real tight wall, like little soldiers, basically. And what’s important is that they’re polarized in such a way that if you cut your skin, all the sort of ions flow out in a certain way, which creates this wound current, which then generates an electric field, and the electric field acts like a beacon. It’s like a bat signal, right? And it guides in these little helper cells, the macrophages that come and gobble up the mess and the keratinocytes and the guys who build it back up again and scar you over. And it starts out strong, and as you scar over, as the wound heals, it very slowly goes away. By the time the wound is healed, there’s no more field. And what was super interesting is this guy, Richard Nuccitelli, invented this thing called the Dermacorder that’s able to sense and evaluate the electric field. And he found that in people over the age of 65, the wound field is less than half of what it is in people under 25. And that actually goes in line with another weird thing about us, which is that our bioelectricity— or sorry, our regeneration capabilities are time-dependent and tissue-dependent.
So you probably know that the intestinal tissue regenerates all the time. You’re going to digest next week’s food with totally different cells than this morning’s food. But also, we’re time-dependent because when we’re just two cells, if you cleave that in half, you get identical twins. Later on during fetal development, it’s totally scarless, which is something we found out, because when we started being able to do fetal surgery in the womb, it was determined that we heal, basically, scarlessly. Then we’re born, and then between the ages of 7 and 11— until we are between the ages of 7 and 11, you chop off a fingertip, it regenerates perfectly, including the nail, but we lose that ability. And so it seems like the older we get, the less we regenerate. And so they’re trying to figure out now how— various programs are trying to figure out how to try to take control of various aspects of our sort of bioelectrical systems to do things like radically accelerate healing, for example, or how to possibly re-engage the body’s developmental processes in order to regenerate preposterous things like a limb. I mean, it sounds preposterous now. Maybe in 20 years, it’ll just be.
Cass: I want to get into some of the technologies that people are thinking of building on this sort of new science. Part of it is that the history of this field, both scientifically and technologically, has really been plagued by the shadow of quackery. And can you talk a little bit about this and how, on the one hand, there’s been some things we’re very glad that we stopped doing some very bad ideas, but it’s also had this shadow on sort of current research and trying to get real therapies to patients?
Adee: Yeah, absolutely. That was actually one of my favorite chapters to write, was the spectacular pseudoscience one, because, I mean, that is so much fun. So it can be boiled down to the fact that we were trigger happy because we see this electricity, we’re super excited about it. We start developing early tools to start manipulating it in the 1700s. And straight away, it’s like, this is an amazing new tool, and there’s all these sort of folk cures out there that we then decide that we’re going to take— not into the clinic. I don’t know what you’d call it, but people just start dispensing this stuff. This is separate from the discovery of endogenous electrical activity, which is what Luigi Galvani famously discovered in the late 1700s. He starts doing this. He’s an anatomist. He’s not an electrician. Electrician, by the way, is what they used to call the sort of literati who were in charge of discovery around electricity. And it had a really different connotation at the time, that they were kind of like the rocket scientists of their day.
But Galvani’s just an anatomist, and he starts doing all of these experiments using these new tools to zap frogs in various ways and permutations. And he decides that he has answered a whole different old question, which is how does man’s will animate his hands and let him feel the world around him? And he says, “This is electrical in nature.” This is a long-standing mystery. People have been bashing their heads against it for the past 100, 200 years. But he says that this is electrical, and there’s a big, long fight. I won’t get into too much between Volta, the guy who invented the battery, and Galvani. Volta says, “No, this is not electrical.” Galvani says, “Yes, it is.” But owing to events, when Volta invents the battery, he basically wins the argument, not because Galvani was wrong, but because Volta had created something useful. He had created a tool that people could use to advance the study of all kinds of things. Galvani’s idea that we have an endogenous electrical sort of impulse, it didn’t lead to anything that anybody could use because we didn’t have tools sensitive enough to really measure it. We only sort of had indirect measurements of it.
And his nephew, after he dies in ignominy, his nephew decides to bring it on himself to rescue, single-handedly, his uncle’s reputation. The problem is, the way he does it is with a series of grotesque, spectacular experiments. He very famously reanimated— well, zapped until they shivered, the corpses of all these dead guys, dead criminals, and he was doing really intense things like sticking electrodes connected to huge voltaic piles, Proto batteries, into the rectums of dead prisoners, which would make them sit up halfway and point at the people who are assembled, this very titillating stuff. Many celebrities of the time would crowd around these demonstrations.
Anyway, so Galvani basically—or sorry, Aldini, the nephew, basically just opens the door to everyone to be like, “Look what we can do with electricity.” Then in short order, there’s a guy who creates something called the Celestial Bed, which is a thing— they’ve got rings, they’ve got electric belts for stimulating the nethers. The Celestial Bed is supposed to help infertile couples. This is how sort of just wild electricity is in those days. It’s kind of like— you know how everybody went crazy for crypto scams last year? Electricity was like the crypto of 1828 or whatever, 1830s. And the Celestial Bed, so people would come and they would pay £9,000 to spend a night in it, right? Well, not at the time. That’s in today’s money. And it didn’t even use electricity. It used the idea of electricity. It was homeopathy, but electricity. You don’t even know where to start. So this is the sort of caliber of pseudoscience, and this is really echoed down through the years. That was in the 1800s. But when people submit papers or grant applications, I heard more than one researchers say to me— people would look at this electric stuff, and they’d be like, “Does anyone still believe this shit?” And it’s like, this is rigorous science, but it’s been just tarnished by the association with this.
Cass: So you mentioned wound care, and the book talks about some of the ways [inaudible] would care. But we’re also looking at other really ambitious ideas like regenerating limbs as part of this extension of wound care. And also, you make the point of certainly doing diagnostics and then possibly treatments for things like cancer. In thinking about cancer in a very different way than the really very, very tightly-focused genetic view we have of cancer now, and thinking about it kind of literally in a wider context. So can you talk about that a little bit?
Adee: Sure. And I want to start by saying that I went to a lot of trouble to be really careful in the book. I think cancer is one of those things that— I’ve had cancer in my family, and it’s tough to talk about it because you don’t want to give people the idea that there’s a cure for cancer around the corner when this is basic research and intriguing findings because it’s not fair. And I sort of struggled. I thought for a while, like, “Do I even bring this up?” But the ideas behind it are so intriguing, and if there were more research dollars thrown at it or pounds or whatever, Swiss francs, you might be able to really start moving the needle on some of this stuff. The idea is, there are two electrical— oh God, I don’t want to say avenues, but it is unfortunately what I have to do. There are two electrical avenues to pursue in cancer. The first one is something that a researcher called Mustafa Djamgoz at Imperial College here in the UK, he has been studying this since the ‘90s. Because he used to be a neurobiologist. He was looking at vision. And he was talking to some of his oncologist Friends, and they gave him some cancer cell lines, and he started looking at the behavior of cancer cells, the electrical behavior of cancer cells, and he started finding some really weird behaviors.
Cancer cells that should not have had anything to do with action potentials, like from prostate cancer lines, when he looked at them, they were oscillating like crazy, as if they were nerves. And then he started looking at other kinds of cancer cells, and they were all oscillating, and they were doing this oscillating behavior. So he spent like seven years sort of bashing his head against the wall. Nobody wanted to listen to him. But now, way more people are now investigating this. There’s going to be an ion channel at Cancer Symposium I think later this month, actually, in Italy. And he found, and a lot of other researchers like this woman, Annarosa Arcangeli, they have found that the reason that cancer cells may have these oscillating properties is that this is how they communicate with each other that it’s time to leave the nest of the tumor and start invading and metastasizing. Separately, there have been very intriguing-- this is really early days. It’s only a couple of years that they’ve started noticing this, but there have been a couple of papers now. People who are on certain kinds of ion channel blockers for neurological conditions like epilepsy, for example, they have cancer profiles that are slightly different from normal, which is that if they do get cancer, they are slightly less likely to die of it. In the aggregate. Nobody should be starting to eat ion channel blockers.
But they’re starting to zero in on which particular ion channels might be responsible, and it’s not just one that you and I have. These cancer kinds, they are like a expression of something that normally only exists when we’re developing in the womb. It’s part of the reason that we can grow ourselves so quickly, which of course, makes sense because that’s what cancer does when it metastasizes, it grows really quickly. So there’s a lot of work right now trying to identify how exactly to target these. And it wouldn’t be a cure for cancer. It would be a way to keep a tumor in check. And this is part of a strategy that has been proposed in the UK a little bit for some kinds of cancer, like the triple-negative kind that just keep coming back. Instead of subjecting someone to radiation and chemo, especially when they’re older, sort of just really screwing up their quality of life while possibly not even giving them that much more time. What if instead you sort of tried to treat cancer more like a chronic disease, keep it managed, and maybe that gives a person like 10 or 20 years? That’s a huge amount of time. And while not messing up with their quality of life.
This is a whole conversation that’s being had, but that’s one avenue. And there’s a lot of research going on in this right now that may yield fruit sort of soon. The much more sci-fi version of this, the studies have mainly been done in tadpoles, but they’re so interesting. So Michael Levin, again, and his postdoc at the time, I think, Brook Chernet, they were looking at what happens— so it’s uncontroversial that as a cancer cell-- so let’s go back to that society of cells thing that I was talking about. You get fertilized egg, it’s depolarized, zero, but then its membrane voltage charges, and it becomes a nerve cell or skin cell or a fat cell. What’s super interesting is that when those responsible members of your body’s society decide to abscond and say, “Screw this. I’m not participating in society anymore. I’m just going to eat and grow and become cancer,” their membrane voltage also changes. It goes much closer to zero again, almost like it’s having a midlife crisis or whatever.
So what they found, what Levin and Chernet found is that you can manipulate those cellular electrics to make the cell stop behaving cancerously. And so they did this in tadpoles. They had genetically engineered the tadpoles to express tumors, but when they made sure that the cells could not depolarize, most of those tadpoles did not express the tumors. And when they later took tadpoles that already had the tumors and they repolarized the voltage, those tumors, that tissue started acting like normal tissue, not like cancer tissue. But again, this is the sci-fi stuff, but the fact that it was done at all is so fascinating, again, from that epigenetic sort of body pattern perspective, right?
Cass: So sort of staying with that sci-fi stuff, except this one, even more closer to reality. And this goes back to some of these experiments which you zapped yourself. Can you talk a little bit about some of these sort of device that you can wear which appear to really enhance certain mental abilities? And some of these you [inaudible].
Adee: So the kit that I wore, I actually found out about it while I was at Spectrum, when I was a DARPATech. And this program manager told me about it, and I was really stunned to find out that just by running two milliamps of current through your brain, you would be able to improve your-- well, it’s not that your ability is improved. It was that you could go from novice to expert in half the time that it would take you normally, according to the papers. And so I really wanted to try it. I was trying to actually get an expert feature written for IEEE Spectrum, but they kept ghosting me, and then by the time I got to New Scientist, I was like, fine, I’m just going to do it myself. So they let me come over, and they put this kit on me, and it was this very sort of custom electrodes, these things, they look like big daisies. And this guy had brewed his own electrolyte solution and sort of smashed it onto my head, and it was all very slimy.
So I was doing this video game called DARWARS Ambush!, which is just like a training— it’s a shooter simulation to help you with shooting. So it was a Gonzo stunt. It was not an experiment. But he was trying to replicate the conditions of me not knowing whether the electricity was on as much as he could. So he had it sort of behind my back, and he came in a couple of times and would either pretend to turn it on or whatever. And I was practicing and I was really bad at it. That is not my game. Let’s just put it that way. I prefer driving games. But it was really frustrating as well because I never knew when the electricity was on. So I was just like, “There’s no difference. This sucks. I’m terrible.” And that sort of inner sort of buzz kept getting stronger and stronger because I’d also made bad choices. I’d taken a red-eye flight the night before. And I was like, “Why would I do that? Why wouldn’t I just give myself one extra day to recover before I go in and do this really complicated feature where I have to learn about flow state and electrical stimulation?” And I was just getting really tense and just angrier and angrier. And then at one point, he came in after my, I don’t know, 5th or 6th, I don’t know, 400th horrible attempt where I just got blown up every time. And then he turned on the electricity, and I could totally feel that something had happened because I have a little retainer in my mouth just at the bottom. And I was like, “Whoa.” But then I was just like, “Okay. Well, now this is going to suck extra much because I know the electricity is on, so it’s not even a freaking sham condition.” So I was mad.
But then the thing started again, and all of a sudden, all the sort of buzzing little angry voices just stopped, and it was so profound. And I’ve talked about it quite a bit, but every time I remember it, I get a little chill because it was the first time I’d ever realized, number one, how pissy my inner voices are and just how distracting they are and how abusive they are. And I was like, “You guys suck, all of you.” But somebody had just put a bell jar between me and them, and that feeling of being free from them was profound. At first, I didn’t even notice because I was just busy doing stuff. And all of a sudden, I was amazing at this game and I dispatched all of the enemies and whatnot, and then afterwards, when they came in, I was actually pissed because I was just like, “Oh, now I get it right and you come in after three minutes. But the last times when I was screwing it up, you left me in there to cook for 20 minutes.” And they were like, “No, 20 minutes has gone by,” which I could not believe. But yeah, it was just a really fairly profound experience, which is what led me down this giant rabbit hole in the first place. Because when I wrote the feature afterwards, all of a sudden I started paying attention to the whole TDCS thing, which I hadn’t yet. I had just sort of been focusing [crosstalk].
Cass: And that’s transcranial—?
Adee: Oh sorry, transcranial direct current stimulation.
Cass: There you go. Thank you. Sorry.
Adee: No. Yeah, it’s a mouthful. But then that’s when I started to notice that quackery we were talking about before. All that history was really informing the discussion around it because people were just like, “Oh, sure. Why don’t you zap your brain with some electricity and you become super smart.” And I was like, “Oh, did I like fall for the placebo effect? What happened here?” And there was this big study from Australia where the guy was just like, “When we average out all of the effects of TDCS, we find that it does absolutely nothing.” Other guys stimulated a cadaver to see if it would even reach the brain tissue and included it wouldn’t. But that’s basically what started me researching the book, and I was able to find answers to all those questions. But of course, TDCS, I mean, it’s finicky just like the electrome. It’s like your living bone is conductive. So when you’re trying to put an electric field on your head, basically, you have to account for things like how thick is that person’s skull in the place that you want to stimulate. They’re still working out the parameters.
There have been some really good studies that show sort of under which particular conditions they’ve been able to make it work. It does not work for all conditions for which it is claimed to work. There is some snake oil. There’s a lot left to be done, but a better understanding of how this affects the different layers of the sort of, I guess, call it, electrome, would probably make it something that you could use replicability. Is that a word? But also, that applies to things like deep brain stimulation, which, also, for Parkinson’s, it’s fantastic. But they’re trying to use it for depression, and in some cases, it works so—I want to use a bad word—amazingly. Just Helen Mayberg, who runs these trials, she said that for some people, this is an option of last resort, and then they get the stimulation, and they just get back on the bus. That’s her quote. And it’s like a switch that you flip. And for other people, it doesn’t work at all.
Cass: Well the book is packed with even more fantastic stuff, and I’m sorry we don’t have time to go through it, because literally, I could sit here and talk to you all day about this.
Adee: I didn’t even get into the frog battery, but okay, that’s fine. Fine, fine skip the frog. Sorry, I’m just kidding. I’m kidding, I’m kidding.
Cass: And thank you so much, Sally, for chatting with us today.
Adee: Oh, thank you so much. I really love talking about it, especially with you.
Cass: Today on Fixing the Future, we’re talking with Sally Adee about her new book on the body’s electrome. For IEEE Spectrum I’m Stephen Cass.
Fifty years ago, on 14 May 1973, a modified Saturn V rocket launched from the Kennedy Space Center carrying Skylab, the United States’ first space station. Six years later, in the early hours of 12 July 1979, Skylab reentered Earth’s atmosphere in a fiery blaze, spreading debris across the Indian Ocean and Western Australia. More than a decade later, a rancher found this end cap from one of Skylab’s oxygen tanks in the dirt. Cattle were drinking collected rainwater from the remains of a US $2.2 billion NASA investment.
Skylab’s fate was sealed moments after lift-off when the sun shield and main solar panel were severely damaged, making it questionable whether the spacecraft could fulfill its multiple planned missions. Without the sun shield, which also protected against small meteoroid damage, the internal temperature of the module would rise to uninhabitable temperatures. The damaged solar panels could not generate enough electricity to power the space station.
Skylab’s sun shield, shown here dangling by a thin strap, was damaged during launch. NASA
Skylab launched as a single, two-story unit that combined living quarters with a workshop. It included hundreds of science experiments, a solar observatory, and even a device for taking in-flight showers. The human crew was scheduled to go up a day after the spacecraft. Within hours of the Skylab failure, NASA delayed that crewed mission, as engineers hustled to assess the damage and suggest repairs. The space agency had only a short window of opportunity to salvage the mission. As the cabin overheated, food would begin to spoil, photographic film would be damaged, and materials would begin to break down and off-gas, making the air unbreathable.
NASA engineer Jack Kinzler suggested a solar shield designed like an umbrella that could be deployed through a 20-centimeter-square port hole near the site of the damage and then opened up to provide shade. Once the proof of concept was approved, engineers raced against time to manufacture the device while the Skylab crew began training on how to make the necessary repairs.
Eleven days later, on 25 May 1973, Commander Charles “Pete” Conrad Jr., Science Pilot Joseph Kerwin (the first medical doctor in space), and Pilot Paul Weitz finally headed to the space station. After orbiting Skylab in an Apollo Command and Service Module to visualize the damage, Weitz prepared for an EVA, or extravehicular activity. While Kerwin held his legs, Weitz stood through an open hatch and attempted to free the damaged solar array by hooking it with a 3-meter pole. This didn’t work. Conrad then attempted to hard dock with Skylab, but the latches wouldn’t catch. He tried again and again and again. After eight failed attempts, the crew resorted to the backup emergency docking procedure, which they had practiced only once on Earth. It worked.
Emergency repairs to Skylab included a replacement solar parasol [left] that was deployed through an airlock [rectangular opening, right].NASA
They then deployed Kinzler’s solar parasol, and within hours the cabin temperature inside Skylab was falling to habitable levels. Two weeks later, Conrad and Kerwin performed a second EVA that removed debris from the main solar array and allowed it to open. Enough power was restored that two more Skylab missions could be completed.
Skylab 3 included Owen Garriott, the first electrical engineer in Space. IEEE Spectrum interviewed him right after his mission and again in 2009. In reading his 1974 interview nearly 50 years removed from the event, I was struck by his description of his role as a scientist/observer of the sun. Running experiments on Skylab, he noted, required decision-making based on interpretation—to, say, select the appropriate instrument settings and optimum mode of operation for a given experiment. It was a nice reminder that there is a subtle art to doing great science.
On 8 February 2019, the 45th anniversary of the return of the last Skylab crew to Earth, the documentary Searching for Skylab: America’s Forgotten Triumph premiered at the U.S. Space and Rocket Center in Huntsville, Ala. Directed by Dwight Steven-Boniecki, the film makes extensive use of archival video, punctuated by interviews with astronauts, engineers, and their families. Searching for Skylab focuses on the initial launch and the scramble to save the mission, but it also highlights some of the science experiments conducted while in space.
I found the clips of middle and high school students describing their proposed Skylab experiments to be quite poignant. They were so hopeful and earnest, but the overheated cabinet ruined a handful of the plant-based studies.
Of course, sometimes new opportunities unexpectedly present themselves. The Skylab 3 crew happened to be in place to view—and sketch—Kohoutek, or the Christmas Comet. This was the first time that humans observed a comet from space.
Skylab’s reentry in 1979 triggered a wave of memorabilia commemorating the event, including this T-shirt.
Ray Dunakin
In February 1974, when the third Skylab crew powered down the space station and departed, they left with the hope that other astronauts would follow. The damage to the solar panels meant that Skylab’s orbit would eventually decay, but NASA’s initial calculations had it in space through early 1983. This would provide overlap with the startup of the new space shuttle program and possible efforts to boost Skylab’s orbit. As late as 1978, a NASA news release touted the promise of using Skylab as living and working quarters for shuttle missions or a convenient work platform for fabrication and construction of additional structures in space. But the shuttle program was delayed, and unusual solar activity affected Skylab’s solar charging. Skylab was not going to make it.
As it became clear that Skylab was going to reenter the Earth’s atmosphere, betting on the timing and location of impact became international news. NASA did its best to ensure that pieces of the 76.5-tonne structure didn’t crash into densely populated areas, by firing the booster rockets one last time to alter its final path. Although the heaviest fragments of the station fell into the Indian Ocean, debris scattered across the state of Western Australia from the coastal town of Esperance, across the Nullarbor Plain—a flat desert on the Great Australian Bight— to the town of Balladonia.
Early relic hunters scavenged the area for bits of Skylab. The largest pieces ended up in museums, including what’s now the Esperance Museum. But the debris field encompassed thousands of square kilometers of a sparsely populated region, and some items took longer to be discovered.
In the early 1990s, a stockman noticed cattle drinking at a place where no water should have been available. He went to investigate and discovered the Skylab fragment pictured at top. It was part of Skylab’s large, cylindrical oxygen tanks, which had broken into two pieces on impact. The larger piece found its way to the Esperance Museum, but the smaller piece remained undiscovered until the curious stockman uncovered it. The curved shape formed a shallow dish to collect rainwater, making it perhaps the most expensive water bowl ever.
Commemorative objects like the Skylab Protective Helmet help capture the spirit of the times.Jeffrey Hall
In the weeks leading up to Skylab’s reentry, a cottage industry of commemorative memorabilia emerged. Bob Smith, the owner of a custom silk-screening shop in Lemon Grove, Calif., got in on the action. He asked his art director, Ray Dunakin, to do something wacky with a guy wearing an old helmet and holding a steel umbrella. In an email, Dunakin told me that the resulting T-shirt became one of their most popular designs, selling thousands. Smith convinced a local TV station to send a camera crew and reporter to cover the printing process. The reporter got a human-interest story, and Smith got free advertising.
Although Dunakin had always been interested in space exploration and had followed all of the NASA launches, the Skylab T-shirt was simply a job very early in his career. He had previously done some freelance airbrush art, but working for Smith was Dunakin’s first full-time job as a graphic designer. He was shocked when one of the shirts resurfaced more than 40 years later on an online resale site, along with a hefty markup in price.
The do-it-yourself Skylab Protective Helmet promised users it would “do you absolutely no good at all!”
Jeffrey Hall
Another young man who tried to cash in on the Skylab hoopla was Jeffrey Hall. At the age of 26, he founded Seat-of-the-Pants Management, which specialized in novelty gifts. In honor of Skylab’s demise, he manufactured Skylab Protective Helmets. The do-it-yourself paper hats came with the following manufacturer’s guarantee: “Should Skylab actually fall on you, your Skylab Protective Helmet will not prevent ‘splitting headaches.’ In fact, it will do you absolutely no good at all!” Hall took orders for approximately 20,000 of these at $2 apiece, but didn’t make a profit. Once Skylab crashed, a number of buyers refused to pay. Hall learned the hard lesson that he should have charged up front.
Commemorative items such as T-shirts and paper hats are often intended to be ephemeral—they exist in the moment to capture the spirit of the time. But sometimes they get stored away in basements, attics, and even museums only to emerge decades later as useful artifacts for historians to study and the public to reflect on a shared past.
Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology.
An abridged version of this article appears in the May 2023 print issue as “Skylab’s Great Fall.”
![]() |
Imagine a world in which you can do transactions and many other things without having to give your personal information. A world in which you don’t need to rely on banks or governments anymore. Sounds amazing, right? That’s exactly what blockchain technology allows us to do.
It’s like your computer’s hard drive. blockchain is a technology that lets you store data in digital blocks, which are connected together like links in a chain.
Blockchain technology was originally invented in 1991 by two mathematicians, Stuart Haber and W. Scot Stornetta. They first proposed the system to ensure that timestamps could not be tampered with.
A few years later, in 1998, software developer Nick Szabo proposed using a similar kind of technology to secure a digital payments system he called “Bit Gold.” However, this innovation was not adopted until Satoshi Nakamoto claimed to have invented the first Blockchain and Bitcoin.
A blockchain is a distributed database shared between the nodes of a computer network. It saves information in digital format. Many people first heard of blockchain technology when they started to look up information about bitcoin.
Blockchain is used in cryptocurrency systems to ensure secure, decentralized records of transactions.
Blockchain allowed people to guarantee the fidelity and security of a record of data without the need for a third party to ensure accuracy.
To understand how a blockchain works, Consider these basic steps:
Let’s get to know more about the blockchain.
Blockchain records digital information and distributes it across the network without changing it. The information is distributed among many users and stored in an immutable, permanent ledger that can't be changed or destroyed. That's why blockchain is also called "Distributed Ledger Technology" or DLT.
Here’s how it works:
And that’s the beauty of it! The process may seem complicated, but it’s done in minutes with modern technology. And because technology is advancing rapidly, I expect things to move even more quickly than ever.
Even though blockchain is integral to cryptocurrency, it has other applications. For example, blockchain can be used for storing reliable data about transactions. Many people confuse blockchain with cryptocurrencies like bitcoin and ethereum.
Blockchain already being adopted by some big-name companies, such as Walmart, AIG, Siemens, Pfizer, and Unilever. For example, IBM's Food Trust uses blockchain to track food's journey before reaching its final destination.
Although some of you may consider this practice excessive, food suppliers and manufacturers adhere to the policy of tracing their products because bacteria such as E. coli and Salmonella have been found in packaged foods. In addition, there have been isolated cases where dangerous allergens such as peanuts have accidentally been introduced into certain products.
Tracing and identifying the sources of an outbreak is a challenging task that can take months or years. Thanks to the Blockchain, however, companies now know exactly where their food has been—so they can trace its location and prevent future outbreaks.
Blockchain technology allows systems to react much faster in the event of a hazard. It also has many other uses in the modern world.
Blockchain technology is safe, even if it’s public. People can access the technology using an internet connection.
Have you ever been in a situation where you had all your data stored at one place and that one secure place got compromised? Wouldn't it be great if there was a way to prevent your data from leaking out even when the security of your storage systems is compromised?
Blockchain technology provides a way of avoiding this situation by using multiple computers at different locations to store information about transactions. If one computer experiences problems with a transaction, it will not affect the other nodes.
Instead, other nodes will use the correct information to cross-reference your incorrect node. This is called “Decentralization,” meaning all the information is stored in multiple places.
Blockchain guarantees your data's authenticity—not just its accuracy, but also its irreversibility. It can also be used to store data that are difficult to register, like legal contracts, state identifications, or a company's product inventory.
Blockchain has many advantages and disadvantages.
I’ll answer the most frequently asked questions about blockchain in this section.
Blockchain is not a cryptocurrency but a technology that makes cryptocurrencies possible. It's a digital ledger that records every transaction seamlessly.
Yes, blockchain can be theoretically hacked, but it is a complicated task to be achieved. A network of users constantly reviews it, which makes hacking the blockchain difficult.
Coinbase Global is currently the biggest blockchain company in the world. The company runs a commendable infrastructure, services, and technology for the digital currency economy.
Blockchain is a decentralized technology. It’s a chain of distributed ledgers connected with nodes. Each node can be any electronic device. Thus, one owns blockhain.
Bitcoin is a cryptocurrency, which is powered by Blockchain technology while Blockchain is a distributed ledger of cryptocurrency
Generally a database is a collection of data which can be stored and organized using a database management system. The people who have access to the database can view or edit the information stored there. The client-server network architecture is used to implement databases. whereas a blockchain is a growing list of records, called blocks, stored in a distributed system. Each block contains a cryptographic hash of the previous block, timestamp and transaction information. Modification of data is not allowed due to the design of the blockchain. The technology allows decentralized control and eliminates risks of data modification by other parties.
Blockchain has a wide spectrum of applications and, over the next 5-10 years, we will likely see it being integrated into all sorts of industries. From finance to healthcare, blockchain could revolutionize the way we store and share data. Although there is some hesitation to adopt blockchain systems right now, that won't be the case in 2022-2023 (and even less so in 2026). Once people become more comfortable with the technology and understand how it can work for them, owners, CEOs and entrepreneurs alike will be quick to leverage blockchain technology for their own gain. Hope you like this article if you have any question let me know in the comments section
FOLLOW US ON TWITTER
The Justice Department unsealed charges against two Russian nationals Friday, accusing them of hacking the now-defunct Mt. Gox cryptocurrency exchange to steal what at the time was nearly half a billion dollars in bitcoin BTCUSD and conspiring to launder the proceeds.The DOJ alleges that Alexey Bilyuchenko and Aleksandr Verner gained unauthorized access to the exchange starting in 2011 and over the next three years illegally transferred 670,000 bitcoins to addresses controlled by them.“As cyber criminals have become more sophisticated in their methods of thievery, our career prosecutors and law enforcement partners, too, have become experts in the latest technologies being abused for malicious purposes,” said Damian Williams, the U.S. Attorney for the Southern District of New York, in a statement.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
![]() |
Imagine a world in which you can do transactions and many other things without having to give your personal information. A world in which you don’t need to rely on banks or governments anymore. Sounds amazing, right? That’s exactly what blockchain technology allows us to do.
It’s like your computer’s hard drive. blockchain is a technology that lets you store data in digital blocks, which are connected together like links in a chain.
Blockchain technology was originally invented in 1991 by two mathematicians, Stuart Haber and W. Scot Stornetta. They first proposed the system to ensure that timestamps could not be tampered with.
A few years later, in 1998, software developer Nick Szabo proposed using a similar kind of technology to secure a digital payments system he called “Bit Gold.” However, this innovation was not adopted until Satoshi Nakamoto claimed to have invented the first Blockchain and Bitcoin.
A blockchain is a distributed database shared between the nodes of a computer network. It saves information in digital format. Many people first heard of blockchain technology when they started to look up information about bitcoin.
Blockchain is used in cryptocurrency systems to ensure secure, decentralized records of transactions.
Blockchain allowed people to guarantee the fidelity and security of a record of data without the need for a third party to ensure accuracy.
To understand how a blockchain works, Consider these basic steps:
Let’s get to know more about the blockchain.
Blockchain records digital information and distributes it across the network without changing it. The information is distributed among many users and stored in an immutable, permanent ledger that can't be changed or destroyed. That's why blockchain is also called "Distributed Ledger Technology" or DLT.
Here’s how it works:
And that’s the beauty of it! The process may seem complicated, but it’s done in minutes with modern technology. And because technology is advancing rapidly, I expect things to move even more quickly than ever.
Even though blockchain is integral to cryptocurrency, it has other applications. For example, blockchain can be used for storing reliable data about transactions. Many people confuse blockchain with cryptocurrencies like bitcoin and ethereum.
Blockchain already being adopted by some big-name companies, such as Walmart, AIG, Siemens, Pfizer, and Unilever. For example, IBM's Food Trust uses blockchain to track food's journey before reaching its final destination.
Although some of you may consider this practice excessive, food suppliers and manufacturers adhere to the policy of tracing their products because bacteria such as E. coli and Salmonella have been found in packaged foods. In addition, there have been isolated cases where dangerous allergens such as peanuts have accidentally been introduced into certain products.
Tracing and identifying the sources of an outbreak is a challenging task that can take months or years. Thanks to the Blockchain, however, companies now know exactly where their food has been—so they can trace its location and prevent future outbreaks.
Blockchain technology allows systems to react much faster in the event of a hazard. It also has many other uses in the modern world.
Blockchain technology is safe, even if it’s public. People can access the technology using an internet connection.
Have you ever been in a situation where you had all your data stored at one place and that one secure place got compromised? Wouldn't it be great if there was a way to prevent your data from leaking out even when the security of your storage systems is compromised?
Blockchain technology provides a way of avoiding this situation by using multiple computers at different locations to store information about transactions. If one computer experiences problems with a transaction, it will not affect the other nodes.
Instead, other nodes will use the correct information to cross-reference your incorrect node. This is called “Decentralization,” meaning all the information is stored in multiple places.
Blockchain guarantees your data's authenticity—not just its accuracy, but also its irreversibility. It can also be used to store data that are difficult to register, like legal contracts, state identifications, or a company's product inventory.
Blockchain has many advantages and disadvantages.
I’ll answer the most frequently asked questions about blockchain in this section.
Blockchain is not a cryptocurrency but a technology that makes cryptocurrencies possible. It's a digital ledger that records every transaction seamlessly.
Yes, blockchain can be theoretically hacked, but it is a complicated task to be achieved. A network of users constantly reviews it, which makes hacking the blockchain difficult.
Coinbase Global is currently the biggest blockchain company in the world. The company runs a commendable infrastructure, services, and technology for the digital currency economy.
Blockchain is a decentralized technology. It’s a chain of distributed ledgers connected with nodes. Each node can be any electronic device. Thus, one owns blockhain.
Bitcoin is a cryptocurrency, which is powered by Blockchain technology while Blockchain is a distributed ledger of cryptocurrency
Generally a database is a collection of data which can be stored and organized using a database management system. The people who have access to the database can view or edit the information stored there. The client-server network architecture is used to implement databases. whereas a blockchain is a growing list of records, called blocks, stored in a distributed system. Each block contains a cryptographic hash of the previous block, timestamp and transaction information. Modification of data is not allowed due to the design of the blockchain. The technology allows decentralized control and eliminates risks of data modification by other parties.
Blockchain has a wide spectrum of applications and, over the next 5-10 years, we will likely see it being integrated into all sorts of industries. From finance to healthcare, blockchain could revolutionize the way we store and share data. Although there is some hesitation to adopt blockchain systems right now, that won't be the case in 2022-2023 (and even less so in 2026). Once people become more comfortable with the technology and understand how it can work for them, owners, CEOs and entrepreneurs alike will be quick to leverage blockchain technology for their own gain. Hope you like this article if you have any question let me know in the comments section
FOLLOW US ON TWITTER
Non-fungible tokens (NFTs) are the most popular digital assets today, capturing the attention of cryptocurrency investors, whales and people from around the world. People find it amazing that some users spend thousands or millions of dollars on a single NFT-based image of a monkey or other token, but you can simply take a screenshot for free. So here we share some freuently asked question about NFTs.
NFT stands for non-fungible token, which is a cryptographic token on a blockchain with unique identification codes that distinguish it from other tokens. NFTs are unique and not interchangeable, which means no two NFTs are the same. NFTs can be a unique artwork, GIF, Images, videos, Audio album. in-game items, collectibles etc.
A blockchain is a distributed digital ledger that allows for the secure storage of data. By recording any kind of information—such as bank account transactions, the ownership of Non-Fungible Tokens (NFTs), or Decentralized Finance (DeFi) smart contracts—in one place, and distributing it to many different computers, blockchains ensure that data can’t be manipulated without everyone in the system being aware.
The value of an NFT comes from its ability to be traded freely and securely on the blockchain, which is not possible with other current digital ownership solutionsThe NFT points to its location on the blockchain, but doesn’t necessarily contain the digital property. For example, if you replace one bitcoin with another, you will still have the same thing. If you buy a non-fungible item, such as a movie ticket, it is impossible to replace it with any other movie ticket because each ticket is unique to a specific time and place.
One of the unique characteristics of non-fungible tokens (NFTs) is that they can be tokenised to create a digital certificate of ownership that can be bought, sold and traded on the blockchain.
As with crypto-currency, records of who owns what are stored on a ledger that is maintained by thousands of computers around the world. These records can’t be forged because the whole system operates on an open-source network.
NFTs also contain smart contracts—small computer programs that run on the blockchain—that give the artist, for example, a cut of any future sale of the token.
Non-fungible tokens (NFTs) aren't cryptocurrencies, but they do use blockchain technology. Many NFTs are based on Ethereum, where the blockchain serves as a ledger for all the transactions related to said NFT and the properties it represents.5) How to make an NFT?
Anyone can create an NFT. All you need is a digital wallet, some ethereum tokens and a connection to an NFT marketplace where you’ll be able to upload and sell your creations
When you purchase a stock in NFT, that purchase is recorded on the blockchain—the bitcoin ledger of transactions—and that entry acts as your proof of ownership.
The value of an NFT varies a lot based on the digital asset up for grabs. People use NFTs to trade and sell digital art, so when creating an NFT, you should consider the popularity of your digital artwork along with historical statistics.
In the year 2021, a digital artist called Pak created an artwork called The Merge. It was sold on the Nifty Gateway NFT market for $91.8 million.
Non-fungible tokens can be used in investment opportunities. One can purchase an NFT and resell it at a profit. Certain NFT marketplaces let sellers of NFTs keep a percentage of the profits from sales of the assets they create.
Many people want to buy NFTs because it lets them support the arts and own something cool from their favorite musicians, brands, and celebrities. NFTs also give artists an opportunity to program in continual royalties if someone buys their work. Galleries see this as a way to reach new buyers interested in art.
There are many places to buy digital assets, like opensea and their policies vary. On top shot, for instance, you sign up for a waitlist that can be thousands of people long. When a digital asset goes on sale, you are occasionally chosen to purchase it.
To mint an NFT token, you must pay some amount of gas fee to process the transaction on the Etherum blockchain, but you can mint your NFT on a different blockchain called Polygon to avoid paying gas fees. This option is available on OpenSea and this simply denotes that your NFT will only be able to trade using Polygon's blockchain and not Etherum's blockchain. Mintable allows you to mint NFTs for free without paying any gas fees.
The answer is no. Non-Fungible Tokens are minted on the blockchain using cryptocurrencies such as Etherum, Solana, Polygon, and so on. Once a Non-Fungible Token is minted, the transaction is recorded on the blockchain and the contract or license is awarded to whoever has that Non-Fungible Token in their wallet.
You can sell your work and creations by attaching a license to it on the blockchain, where its ownership can be transferred. This lets you get exposure without losing full ownership of your work. Some of the most successful projects include Cryptopunks, Bored Ape Yatch Club NFTs, SandBox, World of Women and so on. These NFT projects have gained popularity globally and are owned by celebrities and other successful entrepreneurs. Owning one of these NFTs gives you an automatic ticket to exclusive business meetings and life-changing connections.
That’s a wrap. Hope you guys found this article enlightening. I just answer some question with my limited knowledge about NFTs. If you have any questions or suggestions, feel free to drop them in the comment section below. Also I have a question for you, Is bitcoin an NFTs? let me know in The comment section below
Each January, the editors of IEEE Spectrum offer up some predictions about technical developments we expect to be in the news over the coming year. You’ll find a couple dozen of those described in the following special report. Of course, the number of things we could have written about is far higher, so we had to be selective in picking which projects to feature. And we’re not ashamed to admit, gee-whiz appeal often shaped our choices.
For example, this year’s survey includes an odd pair of new aircraft that will be taking to the skies. One, whose design was inspired by the giant airships of years past, is longer than a football field; the other, a futuristic single-seat vertical-takeoff craft powered by electricity, is about the length of a small car.
While some of the other stories might not light up your imagination as much, they highlight important technical issues the world faces—like the challenges of shifting from fossil fuels to a hydrogen-based energy economy or the threat that new plutonium breeder reactors in China might accelerate the proliferation of nuclear weapons. So whether you prefer reading about topics that are heavy or light (even lighter than air), you should find something here to get you warmed up for 2023.
This article appears in the January 2023 print issue.
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
If electric vertical takeoff and landing aircraft do manage to revolutionize transportation, the date of 5 October 2011, may live on in aviation lore. That was the day when a retired mechanical engineer named Marcus Leng flew a home-built eVTOL across his front yard in Warkworth, Ont., Canada, startling his wife and several of his friends.
“So, take off, flew about 6 feet above the ground, pitched the aircraft towards my wife and the two couples that were there, who were behind automobiles for protection, and decided to do a skidding stop in front of them. Nobody had an idea that this was going to be happening,” recalls Leng.
But as he looked to set his craft down, he saw a wing starting to dig into his lawn. “Uh-oh, this is not good,” he thought. “The aircraft is going to spin out of control. But what instead happened was the propulsion systems revved up and down so rapidly that as the aircraft did that skidding turn, that wing corner just dragged along my lawn exactly in the direction I was holding the aircraft, and then came to a stable landing,” says Leng. At that point, he knew that such an aircraft was viable “because to have that sort of an interference in the aircraft and for the control systems to be able to control it was truly remarkable.”
It was the second time anyone, anywhere had ever flown an eVTOL aircraft.
Today, some 350 organizations in 48 countries are designing, building, or flying eVTOLs, according to the Vertical Flight Society. These companies are fueled by more than US $7 billion and perhaps as much as $10 billion in startup funding. And yet, 11 years after Leng’s flight, no eVTOLs have been delivered to customers or are being produced at commercial scale. None have even been certified by a civil aviation authority in the West, such as the U.S. Federal Aviation Administration or the European Union Aviation Safety Agency.
But 2023 looks to be a pivotal year for eVTOLs. Several well-funded startups are expected to reach important early milestones in the certification process. And the company Leng founded, Opener, could beat all of them by making its first deliveries—which would also be the first for any maker of an eVTOL.
Today, some 350 organizations in 48 countries are designing, building, or flying eVTOLs, according to the Vertical Flight Society.
As of late October, the company had built at its facility in Palo Alto, Calif., roughly 70 aircraft—considerably more than are needed for simple testing and evaluation. It had flown more than 30 of them. And late in 2022, the company had begun training a group of operators on a state-of-the-art virtual-reality simulator system.
Opener’s highly unusual, single-seat flier is intended for personal use rather than transporting passengers, which makes it almost unique. Opener intends to have its aircraft classified as an “ultralight,” enabling it to bypass the rigorous certification required for commercial-transport and other aircraft types. The certification issue looms as a major unknown over the entire eVTOL enterprise, at least in the United States, because, as the blog Jetlaw.com noted last August, “the FAA has no clear timeline or direction on when it will finalize a permanent certification process for eVTOL.”
Opener’s strategy is not without risks, either. For one, there’s no guarantee that the FAA will ultimately agree that Opener’s aircraft, called BlackFly, qualifies as an ultralight. And not everyone is happy with this approach. “My concern is, these companies that are saying they can be ultralights and start flying around in public are putting at risk a $10 billion [eVTOL] industry,” says Mark Moore, founder and chief executive of Whisper Aero in Crossville, Tenn. “Because if they crash, people won’t know the difference” between the ultralights and the passenger eVTOLs, he adds. “To me, that’s unacceptable.” Previously, Moore led a team at NASA that designed a personal-use eVTOL and then served as engineering director at Uber’s Elevate initiative.
A BlackFly eVTOL took off on 1 October, 2022, at the Pacific Airshow in Huntington Beach, Calif. Irfan Khan/Los Angeles Times/Getty Images
Opener’s aircraft is as singular as its business model. It’s a radically different kind of aircraft, and it sprang almost entirely from Leng’s fertile mind.
“As a kid,” he says, “I already envisioned what it would be like to have an aircraft that could seamlessly do a vertical takeoff, fly, and land again without any encumbrances whatsoever.” It was a vision that never left him, from a mechanical-engineering degree at the University of Toronto, management jobs in the aerospace industry, starting a company and making a pile of money by inventing a new kind of memory foam, and then retiring in 1996 at the age of 36.
The fundamental challenge to designing a vertical-takeoff aircraft is endowing it with both vertical lift and efficient forward cruising. Most eVTOL makers achieve this by physically tilting multiple large rotors from a vertical rotation axis, for takeoff, to a horizontal one, for cruising. But the mechanism for tilting the rotors must be extremely robust, and therefore it inevitably adds substantial complexity and weight. Such tilt-rotors also entail significant compromises and trade-offs in the size of the rotors and their placement relative to the wings.
Opener’s BlackFly ingeniously avoids having to make those trade-offs and compromises. It has two wings, one in front and one behind the pilot. Affixed to each wing are four motors and rotors—and these never change their orientation relative to the wings. Nor do the wings move relative to the fuselage. Instead, the entire aircraft rotates in the air to transition between vertical and horizontal flight.
To control the aircraft, the pilot moves a joystick, and those motions are instantly translated by redundant flight-control systems into commands that alter the relative thrust among the eight motor-propellers.
Visually, it’s an astounding aircraft, like something from a 1930s pulp sci-fi magazine. It’s also a triumph of engineering.
Leng says the journey started for him in 2008, when “I just serendipitously stumbled upon the fact that all the key technologies for making electric VTOL human flight practical were coming to a nexus.”
The journey that made Leng’s dream a reality kicked into high gear in 2014 when a chance meeting with investor Sebastian Thrun at an aviation conference led to Google cofounder Larry Page investing in Leng’s project.
Leng started in his basement in 2010, spending his own money on a mélange of home-built and commercially available components. The motors were commercial units that Leng modified himself, the motor controllers were German and off the shelf, the inertial-measurement unit was open source and based on an Arduino microcontroller. The batteries were modified model-aircraft lithium-polymer types.
“The main objective behind this was proof of concept,” he says.“I had to prove it to myself, because up until that point, they were just equations on a piece of paper. I had to get to the point where I knew that this could be practical.”
After his front-yard flight in 2011, there followed several years of refining and rebuilding all of the major components until they achieved the specifications Leng wanted. “Everything on BlackFly is from first principles,” he declares.
The motors started out generating 160 newtons (36 pounds) of static thrust. It was way too low. “I actually tried to purchase motors and motor controllers from companies that manufactured those, and I specifically asked them to customize those motors for me, by suggesting a number of changes,” he says. “I was told that, no, those changes won’t work.”
So he started designing his own brushless AC motors. “I did not want to design motors,” says Leng. “In the end, I was stunned at how much improvement we could make by just applying first principles to this motor design.”
Eleven years after Leng’s flight, no eVTOLs have been delivered to customers or are being produced at commercial scale.
To increase the power density, he had to address the tendency of a motor in an eVTOL to overheat at high thrust, especially during hover, when cooling airflow over the motor is minimal. He began by designing a system to force air through the motor. Then he began working on the rotor of the motor (not to be confused with the rotor wings that lift and propel the aircraft). This is the spinning part of a motor, which is typically a single piece of electrical steel. It’s an iron alloy with very high magnetic permeability.
By layering the steel of the rotor, Leng was able to greatly reduce its heat generation, because the thinner layers of steel limited the eddy currents in the steel that create heat. Less heat meant he could use higher-strength neodymium magnets, which would otherwise become demagnetized. Finally, he rearranged those magnets into a configuration called a Halbach array. In the end Leng’s motors were able to produce 609 newtons (137 lbs.) of thrust.
Overall, the 2-kilogram motors are capable of sustaining 20 kilowatts, for a power density of 10 kilowatts per kilogram, Leng says. It’s an extraordinary figure. One of the few motor manufacturers claiming a density in that range is H3X Technologies, which says its HPDM-250 clocks in at 12 kw/kg.
The brain of the BlackFly consists of three independent flight controllers, which calculate the aircraft’s orientation and position, based on readings from the inertial-measurement units, GPS receivers, and magnetometers. They also use pitot tubes to measure airspeed. The flight controllers continually cross-check their outputs to make sure they agree. They also feed instructions, based on the operator’s movement of the joystick, to the eight motor controllers (one for each motor).
Equipped with these sophisticated flight controllers, the fly-by-wire BlackFly is similar in that regard to the hobbyist drones that rely on processors and clever algorithms to avoid the tricky manipulations of sticks, levers, and pedals required to fly a traditional fixed- or rotary-wing aircraft.
That sophisticated, real-time control will allow a far larger number of people to consider purchasing a BlackFly when it becomes available. In late November, Opener had not disclosed a likely purchase price, but in the past the company had suggested that BlackFly would cost as much as a luxury SUV. So who might buy it? CEO Ken Karklin points to several distinct groups of potential buyers who have little in common other than wealth.
There are early tech adopters and also people who are already aviators and are “passionate about the future of electric flight, who love the idea of being able to have their own personal vertical-takeoff-and-landing, low-maintenance, clean aircraft that they can fly in rural and uncongested areas,” Karklin says. “One of them is a business owner. He has a plant that’s a 22-mile drive but would only be a 14-mile flight, and he wants to install charging infrastructure on either end and wants to use it to commute every day. We love that.”
Others are less certain about how, or even whether, this market segment will establish itself. “When it comes to personal-use eVTOLs, we are really struggling to see the business case,” says Sergio Cecutta, founder and partner at SMG Consulting, where he studies eVTOLs among other high-tech transportation topics. “I’m not saying they won’t sell. It’s how many will they sell?” He notes that Opener is not the only eVTOL maker pursuing a path to success through the ultralight or some other specialized FAA category. As of early November, the list included Alauda Aeronautics, Air, Alef, Bellwether Industries, Icon Aircraft, Jetson, Lift Aircraft, and Ryse Aero Technologies.
What makes Opener special? Both Karklin and Leng emphasize the value of all that surrounds the BlackFly aircraft. For example, there are virtual-reality-based simulators that they say enable them to fully train an operator in 10 to 15 hours. The aircraft themselves are heavily instrumented: “Every flight, literally, there’s over 1,000 parameters that are recorded, some of them at 1,000 hertz, some 100 Hz, 10 Hz, and 1 Hz,” says Leng. “All that information is stored on the aircraft and downloaded to our database at the end of the flight. When we go and make a software change, we can do what’s called regression testing by running that software using all the data from our previous flights. And we can compare the outputs against what the outputs were during any specific flight and can automatically confirm that the changes that we’ve made are without any issues. And we can also compare, to see if they make an improvement.”
Ed Lu, a former NASA astronaut and executive at Google, sits on Opener’s safety-review board. He says what impressed him most when he first met the BlackFly team was “the fact that they had based their entire development around testing. They had a wealth of flight data from flying this vehicle in a drone mode, an unmanned mode.” Having all that data was key. “They could make their decisions based not on analysis, but after real-world operations,” Lu says, adding that he is particularly impressed by Opener’s ability to manage all the flight data. “It allows them to keep track of every aircraft, what sensors are in which aircraft, which versions of code, all the way down to the flights, to what happened in each flight, to videos of what’s happening.” Lu thinks this will be a huge advantage once the aircraft is released into the “real” world.
Karklin declines to comment on whether an ultralight approval, which is governed by what the FAA designates “ Part 103,” might be an opening move toward an FAA type certification in the future. “This is step one for us, and we are going to be very, very focused on personal air vehicles for recreational and fun purposes for the foreseeable future,” he says. “But we’ve also got a working technology stack here and an aircraft architecture that has considerable utility beyond the realm of Part-103 [ultralight] aircraft, both for crewed and uncrewed applications.” Asked what his immediate goals are, Karklin responds without hesitating. “We will be the first eVTOL company, we believe, in serial production, with a small but steadily growing revenue and order book, and with a growing installed base of cloud-connected aircraft that with every flight push all the telemetry, all the flight behavior, all the component behavior, all the operator-behavior data representing all of this up to the cloud, to be ingested by our back office, and processed. And that provides us a lot of opportunity.”
This article appears in the January 2023 print issue as “Finally, an eVTOL You Can Buy Soonish.”
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
At Moffett Field in Mountain View, Calif., Lighter Than Air (LTA) Research is floating a new approach to a technology that saw its rise and fall a century ago: airships. Although airships have long since been supplanted by planes, LTA, which was founded in 2015 by CEO Alan Weston, believes that through a combination of new materials, better construction techniques, and technological advancements, airships are poised to—not reclaim the skies, certainly—but find a new niche.
Although airships never died off entirely—the Goodyear blimps, familiar to sports fans, are proof of that—the industry was already in decline by 1937, the year of the Hindenburg disaster. By the end of World War II, airships couldn’t compete with the speed airplanes offered, and they required larger crews. Today, what airships still linger serve primarily for advertising and sightseeing.
LTA’s Pathfinder 1 carries bigger dreams than hovering over a sports stadium, however. The company sees a natural fit for airships in humanitarian and relief missions. Airships can stay aloft for long periods of time, in case ground conditions aren’t ideal, have a long range, and carry significant payloads, according to Carl Taussig, LTA’s chief technical officer.
Pathfinder’s cigar-shaped envelope is just over 120 meters in length and 20 meters in diameter. While that dwarfs Goodyear’s current, 75-meter Wingfoot One, it’s still only half the length of the Hindenburg. LTA expects Pathfinder 1 to carry approximately 4 tonnes of cargo, in addition to its crew, water ballast, and fuel. The airship will have a top speed of 65 knots, or about 120 kilometers per hour—on par with the Hindenburg—with a sustained cruise speed of 35 to 40 knots (65 to 75 km/h).
It may not seem much of an advance to be building an airship that flies no faster than the Hindenburg. But Pathfinder 1 carries a lot of new tech that LTA is betting will prove key to an airship resurgence.
For one, airships used to be constructed around riveted aluminum girders, which provided the highest strength-to-weight ratio available at the time. Instead, LTA will be using carbon-fiber tubes attached to titanium hubs. As a result, Pathfinder 1’s primary structure will be both stronger and lighter.
Pathfinder 1’s outer covering is also a step up from past generations. Airships like the 1930s’ Graf Zeppelin had coverings made out of doped cotton canvas. The dope painted on the fabric increased its strength and resiliency. But canvas is still canvas. LTA has instead built its outer coverings out of a three-layer laminate of synthetics. The outermost layer is DuPont’s Tedlar, which is a polyvinyl fluoride. The middle layer is a loose weave of fire-retardant aramid fibers. The inner layer is polyester. “It’s very similar to what’s used in a lot of racing sailboats,” says Taussig. “We needed to modify that material to make it fire resistant and change a little bit about its structural performance.”
LTA Research
But neither the materials science nor the manufacturing advances will take primary credit for LTA’s looked-for success, according to Taussig—instead, it’s the introduction of electronics. “Everything’s electric on Pathfinder,” he says. “All the actuation, all the propulsion, all the actual power is all electrically generated. It’s a fully electric fly-by-wire aircraft, which is not something that was possible 80 years ago.” Pathfinder 1 has 12 electric motors for propulsion, as well as four tail fins with steering rudders controlled by its fly-by-wire system. (During initial test flights, the airship will be powered by two reciprocating aircraft engines).
There’s one other piece of equipment making an appearance on Pathfinder 1 that wasn’t available 80 years ago: lidar. Installed at the top of each of Pathfinder 1’s helium gas cells is an automotive-grade lidar. “The lidar can give us a point cloud showing the entire internal hull of that gas cell,” says Taussig, which can then be used to determine the gas cell’s volume accurately. In flight, the airship’s pilots can use that information, as well as data about the helium’s purity, pressure, and temperature, to better keep the craft pitched properly and to avoid extra stress on the internal structure during flight.
Although LTA’s initial focus is on humanitarian applications, there are other areas where airships might shine one day. “An airship is kind of a ‘tweener,’ in between sea cargo and air freight,” says Taussig. Being fully electric, Pathfinder 1 is also greener than traditional air- or sea-freight options.
After completing Pathfinder 1’s construction late in 2022, LTA plans to conduct a series of ground tests on each of the airship’s systems in the first part of 2023. Once the team is satisfied with those tests, they’ll move to tethered flight tests and finally untethered flight tests over San Francisco’s South Bay later in the year.
The company will also construct an approximately 180-meter-long airship, Pathfinder 3 at its Akron Airdock facility in Ohio. Pathfinder 3 won’t be ready to fly in 2023, but its development shows LTA’s aspirations for an airship renaissance is more than just hot air.
This article appears in the January 2023 print issue as “The Return of the Airship.”
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.
Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.
Both systems offer the prospect of being inexpensive to use. The electric bill itself would range “from US $5 to $10,” for a pulse lasting a few seconds, says Michael Perry, the vice president in charge of laser systems for General Atomics.
Why are we getting ray guns only now, more than a century after H.G. Wells imagined them in his sci-fi novel The War of the Worlds? Put it down partly to the rising demand for cheap antimissile defense, but it’s mainly the result of technical advances in high-energy lasers.
The old standby for powerful lasers employed chemical reactions in flowing gas. That method was clumsy, heavy, and dangerous, and the laser itself became a flammable target for enemies to attack. The advantage was that these chemical lasers could be made immensely powerful, a far cry from the puny pulsed ruby lasers that wowed observers back in the 1960s by punching holes in razor blades (at power levels jocularly measured in “gillettes”).
“With lasers, if you can see it, you can kill it.” —Robert Afzal, Lockheed Martin
By 2014, fiber lasers had reached the point where they could be considered for weapons, and one 30-kW model was installed on the USS Ponce, where it demonstrated the ability to shoot down speedboats and small drones at relatively close range. The 300-kW fiber lasers being employed now in the two Army projects emit about 100 kW in optical power, enough to burn through much heftier targets (not to mention quite a few gillettes) at considerable distances.
“A laser of that class can be effective against a wide variety of targets, including cruise missiles, mortars, UAVs, and aircraft,” says Perry. “But not reentry vehicles [launched by ballistic missiles].” Those are the warheads, and to ward them off, he says, you’d probably have to hit the rocket when it’s still in the boost phase, which would mean placing your laser in orbit. Laser tech is still far from performing such a feat.
Even so, these futuristic weapons will no doubt find plenty of applications in today’s world. Israel made news in April by field-testing an airborne antimissile laser called Iron Beam, a play on the name Iron Dome, the missile system it has used to down rockets fired from Gaza. The laser system, reportedly rated at about 100 kW, is still not in service and hasn’t seen combat, but one day it may be able to replace some, if not all, of Iron Dome’s missiles with photons. Other countries have similar capabilities, or say they do. In May, Russia said it had used a laser to incinerate a Ukrainian drone from 5 kilometers away, a claim that Ukraine’s president, Volodymyr Zelenskyy, derided.
A missile is destroyed by a low-power, 2013 version of Lockheed Martin’s fiber laser www.youtube.com
Not all ray guns must be lasers, though. In March, Taiwan News reported that Chinese researchers had built a microwave weapon that in principle could be placed in orbit from where its 5-megawatt pulses could fry the electronic heart of an enemy satellite. But making such a machine in the lab is quite different from operating it in the field, not to mention in outer space, where supplying power and removing waste heat constitute major problems.
Because lasers performance falls off in bad weather, they can’t be relied on by themselves to defend critically important targets. They must instead be paired with kinetic weapons—missiles or bullets—to create a layered defense system.
“With lasers, if you can see it, you can kill it; typically rain and snow are not big deterrents,” says Robert Afzal, an expert on lasers at Lockheed Martin. “But a thundercloud—that’s hard.”
Afzal says that the higher up a laser is placed, the less interference it will face, but there is a trade-off. “With an airplane you have the least amount of resources—least volume, least weight—that is available to you. On a ship, you have a lot more resources available, but you’re in the maritime atmosphere, which is pretty hazy, so you may need a lot more power to get to the target. And the Army is in between: It deals with closer threats, like rockets and mortars, and they need a deep magazine, because they deal with a lot more targets.”
In every case, the point is to use expensive antimissile missiles only when you must. Israel opted to pursue laser weapons in part because its Iron Dome missiles cost so much more than the unguided, largely homemade rockets they defend against. Some of the military drones that Russia and Ukraine are now flying wouldn’t break the budget of the better-heeled sort of hobbyist. And it would be a Pyrrhic victory indeed to shoot them from the sky with projectiles so costly that you went broke.
This article appears in the January 2023 print issue as “Economics Drives a Ray-Gun Resurgence .”
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
RSS Rabbit links users to publicly available RSS entries.
Vet every link before clicking! The creators accept no responsibility for the contents of these entries.
Relevant
Fresh
Convenient
Agile
We're not prepared to take user feedback yet. Check back soon!