********** MUSIC **********
return to top
Filter efficiency 100.000 (0 matches/921 results)
********** ENTERTAINMENT **********
return to top
Elliot Page on Juno, Hollywood’s dark side and coming out twice
Sat, 10 Jun 2023 06:00:14 GMT
When the feelgood movie made him an Oscar-nominated star, the strain of hiding who he was almost forced him to quit acting. He explains how opening up about being gay, then trans, saved his life
Elliot Page’s memoir is called Pageboy. At its heart is the story of his transitioning from an Oscar-nominated actress, best known for the wonderful coming-of-age comedy drama Juno, to one of the world’s most high profile trans men. He writes, rather beautifully, about gender dysphoria, top surgery and finally finding himself. But the book is so much more than a tale of transition.
Pageboy is a modern-day Hollywood Babylon, written by a sensitive soul rather than a scandalmonger. Page depicts a film industry even more rancid than we may have suspected. This is a world where it’s not only the Harvey Weinsteins at the top of the pyramid who get to abuse the young and powerless – just about everybody seems to have a go. It’s a world where most people appear to be closeted in one way or another, a world where more acting is done off set than on.
Continue reading...No one wants to see the cast naked any more, so this TV follow-up shuns stripping for comic capers and cost-of-living tragedy. Even better, it actually gives plotlines to the female characters
Television shows that remake films tend to be exercises in pointless nostalgia. Do you remember the movies Fatal Attraction, Dangerous Liaisons and American Gigolo? Yes. Would you like to watch a weird cosplay version of them that goes on for 10 hours and confusingly reshuffles the plot? Um, not really. The Full Monty (from 14 June, Disney+) is the latest entrant in an already tired genre, but it has one up on most of the competition: all the core cast are in that sweet spot where they’re successful enough to be worth rehiring but not so famous they’ve turned the reboot down. That means there’s no need to rejig the story of redundant Sheffield steelworkers who, in 1997, found solace in hard times by forming a Chippendales-style male striptease troupe. We simply return to Sheffield 26 years later, to find the same characters, played by the same actors, living the same lives.
The film had it easy, plot-wise, in that it built towards that heartwarming climactic moment when a sextet of men showed the local community their penises. Those six appendages were the pegs on which were hung serious subtexts about the misery of life in a Thatcher-ravaged, deindustrialised northern England. A quarter of a century on, however, the prospect of the old boys windmilling their hosepipes in housewives’ faces would horrify everyone. So the new Full Monty is fully clothes-on.
Continue reading...Animation has come a long way since 1900, when J. Stuart Blackton created The Enchanted Drawing, the earliest known animated film. The 90-second movie was created using stop-motion techniques, as flat characters, props, and backgrounds were drawn on an easel or made from paper.
Most modern animators rely on computer graphics and visualization techniques to create popular movies and TV shows like Finding Dory, Toy Story, and Paw Patrol. In the 1960s and ’70s, computer science pioneers David Evans and IEEE Life Member Ivan E. Sutherland led the development of many of the technologies animators now use. Their groundbreaking research, conducted at the University of Utah, in Salt Lake City, and at their company, Evans and Sutherland, helped jump-start the computer graphics industry.
A ceremony was held at the university on 24 March to recognize the computer graphics and visualization techniques with an IEEE Milestone. The IEEE Utah Section sponsored the nomination.
Computer graphics began in the 1950s with interactive games and visualization tools designed by the U.S. military to develop technologies for aviation, radar, and rocketry.
Evans and Sutherland, then computer science professors at the University of Utah, wanted to expand on the use of such tools by finding a way for computers to simulate objects and environments. In 1968 they founded Evans and Sutherland, locating the E&S headquarters in the university’s research park.
Many of today’s computer graphics luminaries—including Pixar cofounder Edwin Catmull, Adobe cofounder John Warnock, and Netscape founder Jim Clark, who also founded Silicon Graphics—got their start in the industry as E&S employees or as doctoral students working on research at the company’s facilities.
IEEE Milestone Dedication: Utah Computer Graphics youtu.be
While at E&S, the employees and students made fundamental contributions to computer graphics processes, says IEEE Fellow Christopher Johnson, a University of Utah computer science professor.
“David Evans, Ivan Sutherland, and their students and colleagues helped change the world,” Johnson says.
“The period from 1968 through 1978 was an extraordinary time for computer graphics,” adds Brian Berg, IEEE Region 6 history chair. “There was a rare confluence of faculty, students, staff, facilities, and resources to support research into computer vision algorithms and hardware that produced remarkable developments in computer graphics and visualization techniques. This research was responsible for the birth of much of continuous-tone computer graphics as we know it today.” Continuous-tone computer graphics have a virtually unlimited range of color and shades of gray.
Evans began his career in 1955 at Bendix—an aviation electronics company in Avon, Ohio—as manager of a project that aimed to develop an early personal computer. He left to join the University of California, Berkeley, as chair of its computer science department. He also headed Berkeley’s research for the Pentagon’s Advanced Research Project Agency (now known as the Defense Advanced Research Projects Agency).
In 1963 Evans became a principal investigator for ARPA’s Project Genie. He helped develop hardware techniques that enabled commercial use of time-shared computer systems.
In 1965 the University of Utah hired him to establish its computer science department after receiving an ARPA grant of US $5 million to investigate how the emerging field of computer graphics could play a role in the country’s technological competitiveness, according to Computer Graphics and Computer Animation.
In 1968 Evans asked Sutherland, a former colleague at Berkeley who was then an associate professor of electrical engineering at Harvard, to join him at the University of Utah, luring him with the promise of starting a company together. Sutherland was already famous in computer graphics circles, having created Sketchpad, the first computer-aided design program, for his Ph.D. thesis in 1963 at MIT.
The two founded E&S almost as soon as Sutherland arrived, and they began working on computer-based simulation systems.
The duo in 1969 developed the line-drawing system displays LDS-1 and LDS-2, the first graphics devices with a processing unit. They then built the E&S Picture System—the next generation of LDS displays.
Those workstations, as they were called, came to be used by most computer-generated-imagery production companies through the 1980s.
E&S also developed computer-based simulation systems for military and commercial training, including the CT5 and CT6 flight simulators.
In addition to hiring employees, E&S welcomed computer science doctoral students from the university to work on their research projects at the company.
“Almost every influential person in the modern computer-graphics community either passed through the University of Utah or came into contact with it in some way,” Robert Rivlin wrote in his book, The Algorithmic Image: Graphic Visions of the Computer Age.
One of the doctoral students was Henri Gouraud, who in 1971 developed an algorithm to simulate the differing effects of light and color across the surface of an object. The Gouraud shading method is still used by creators of video games and cartoons.
In 1974 Edwin Catmull, then also a doctoral student at the university, developed the principle of texture mapping, a method for adding complexity to a computer-generated surface. Catmull went on to help found Pixar in 1986 with computer scientist Alvy Ray Smith, an IEEE member. For his work in the industry, Catmull received the 2006 IEEE John von Neumann Medal.
Doctoral student Bui Tuong Phong in 1973 devised Phong shading, a modeling method that reflects light so computer-generated graphics can look shiny and plasticlike.
“As a group, the University of Utah contributed more to the field of knowledge in computer graphics than any of its contemporaries,” Berg wrote in the Milestone proposal. “That fact is made most apparent both in the widespread use of the techniques developed and in the body of awards the innovations garnered.” The awards include several scientific and technical Oscars, an Emmy, and many IEEE medals.
Administered by the IEEE History Center and supported by donors, the Milestone program recognizes outstanding technical developments around the world.
The Milestone plaque displayed on a granite obelisk outside of the University of Utah’s Merrill engineering building reads:
In 1965 the University of Utah established a Center of Excellence for computer graphics research with Advanced Research Projects Agency (ARPA) funding. In 1968 two professors founded the pioneering graphics hardware company Evans & Sutherland; by 1978, fundamental rendering and visualization techniques disclosed in doctoral dissertations included the Warnock algorithm, Gouraud shading, the Catmull-Rom spline, and the Blinn-Phong reflection model. Alumni-founded companies include Atari, Silicon Graphics, Adobe, Pixar, and Netscape.
A group of researchers from NASA, MIT, and other institutions have achieved the fastest space-to-ground laser-communication link yet, doubling the record they set last year. With data rates of 200 gigabits per second, a satellite could transmit more than 2 terabytes of data—roughly as much as 1,000 high-definition movies—in a single 5-minute pass over a ground station.
“The implications are far-reaching because, put simply, more data means more discoveries,” says Jason Mitchell, an aerospace engineer at NASA’s Space Communications and Navigation program.
The new communications link was made possible with the TeraByte InfraRed Delivery (TBIRD) system orbiting about 530 kilometers above Earth’s surface. Launched into space last May, TBIRD achieved downlink rates of up to 100 Gb/s with a ground-based receiver in California by last June. This was 100 times as fast as the quickest Internet speeds in most cities, and more than 1,000 times as fast as radio links traditionally used for communications with satellites.
The fastest data networks on Earth typically rely on laser communications over fiber optics. However, a high-speed laser-based Internet does not exist yet for satellites. Instead, space agencies and commercial satellite operators most commonly use radio to communicate with objects in space. The infrared light that laser communications can employ has a much higher frequency than radio waves, enabling much higher data rates.
“There are satellites currently in orbit limited by the amount of data they are able to downlink, and this trend will only increase as more capable satellites are launched,” says Kat Riesing, an aerospace engineer and a staff member at MIT Lincoln Laboratory on the TBIRD team. “Even a hyperspectral imager—HISUI on the International Space Station—has to send data back to Earth via storage drives on cargo ships due to limitations on downlink rates. TBIRD is a big enabler for missions that collect important data on Earth’s climate and resources, as well as astrophysics applications such as black hole imaging.”
MIT Lincoln Laboratory conceived TBIRD in 2014 as a low-cost, high-speed way to access data on spacecraft. A key way it reduced expenses was by using commercial, off-the-shelf components originally developed for terrestrial use. These include high-rate optical modems developed for fiber telecommunications and high-speed large-volume storage to hold data, Riesing says.
Located onboard NASA’s Pathfinder Technology Demonstrator 3 (PTD-3) satellite, TBIRD was carried into orbit on SpaceX’s Transporter-5 rideshare mission from Cape Canaveral Space Force Station in Florida on 25 May 2022. The PTD-3 satellite is a roughly 12-kilogram CubeSat about the size of two stacked cereal boxes, and its TBIRD payload is no larger than the average tissue box. “Industry’s drive to small, low-power, high-data-rate optical transceivers enabled us to achieve a compact form factor suitable even for small satellites,” Mitchell says.
“There are satellites currently in orbit limited by the amount of data they are able to downlink, and this trend will only increase as more-capable satellites are launched.” —Kat Riesing, aerospace engineer, MIT Lincoln Laboratory
The development of TBIRD faced a number of challenges. To start with, terrestrial components are not designed to survive the rigors of launching to and operating in space. For example, during a thermal test simulating the extreme temperatures the devices might face in space, the fibers in the optical signal amplifier melted.
The problem was that, when used as originally intended, the atmosphere could help cool the amplifier through convection. When tested in a vacuum, simulating space, the heat that the amplifier generated was trapped. To solve the issue, the researchers worked with the amplifier’s vendor to modify it so that it released heat through conduction instead.
In addition, laser beams from space to Earth can experience distortion from atmospheric effects and weather conditions. This can cause power loss, and in turn data loss, for the beams.
To compensate, the scientists developed their own version of automatic repeat request (ARQ), a protocol for controlling errors in data transmission over a communications link. In this arrangement, the ground terminal uses a low-rate uplink signal to let the satellite know that it has to retransmit any block of data, or frame, that has been lost or damaged. The new protocol lets the ground station tell the satellite which frames it received correctly, so the satellite knows which ones to retransmit and not waste time sending data it doesn’t have to.
Another challenge the scientists faced stemmed from how lasers form in much narrower beams than radio transmissions. For successful data transmission, these beams must be aimed precisely at their receivers. This is often accomplished by mounting the laser on a gimbal. Due to TBIRD’s small size, however, it instead maneuvers the CubeSat carrying it to point it at the ground, using any error signals it receives to correct the satellite’s orientation. This gimbal-less strategy also helped further shrink TBIRD, making it cheaper to launch.
TBIRD’s architecture can support multiple channels through wavelength separation to enable higher data rates, Riesing says. This is how TBIRD accomplished a 200-Gb/s downlink on 28 April—by using two 100-Gb/s channels, she explains. “This can scale further on a future mission if the link is designed to support it,” Riesing notes.
“Put simply, more data means more discoveries.” —Jason Mitchell, aerospace engineer, NASA
The research team’s next step is to explore where to apply this technology in upcoming missions. “This technology is particularly useful for science missions where collecting a lot of data can provide significant benefits,” Riesing says. “One mission concept that is enabled by this is the Event Horizon Explorer mission, which will extend the exciting work of the Event Horizon Telescope in imaging black holes with even higher resolution.”
The scientists also want to explore how to extend this technology to different scenarios, such as geostationary orbit, Riesing says. Moreover, Mitchell says, they are looking at ways to push TBIRD’s capabilities as far away as the moon, in order to support future missions there. The rates under consideration are in the 1- to 5-Gb/s range, which “may not seem like much of an improvement, but remember the moon is roughly 400,000 km away from Earth, which is quite a long distance to cover,” Mitchell says.
The new technology may also find use in high-speed atmospheric data links on the ground. “For example, from building to building, or across inhospitable terrain, such as from mountaintop to mountaintop, where the cost of laying fiber systems could be exorbitant,” Riesing says.
On a gin-clear December day, I’m sitting under the plexiglass bubble of a radically new kind of aircraft. It’s a little past noon at the Byron Airport in northern California; in the distance, a jagged line of wind turbines atop rolling hills marks the Altamont Pass, blades spinning lazily. Above me, a cloudless blue sky beckons.
The aircraft, called BlackFly, is unlike anything else on the planet. Built by a Palo Alto, Calif., startup called Opener, it’s an electric vertical take-off and landing (eVTOL) aircraft with stubby wings fore and aft of the pilot, each with four motors and propellers. Visually, it’s as though an aerial speedster from a 1930s pulp sci-fi story has sprung from the page.
There are a couple of hundred startups designing or flying eVTOLs. But only a dozen or so are making tiny, technologically sophisticated machines whose primary purpose is to provide exhilarating but safe flying experiences to people after relatively minimal training. And in that group, Opener has jumped out to an early lead, having built dozens of aircraft at its facilities in Palo Alto and trained more than a score of people to fly them.
My own route to the cockpit of a BlackFly was relatively straightforward. I contacted the company’s CEO, Ken Karklin, in September 2022, pitched him on the idea of a story and video, and three months later I was flying one of his aircraft.
Well, sort of flying it. My brief flight was so highly automated that I was more passenger than pilot. Nevertheless, I spent about a day and a half before the flight being trained to fly the machine manually, so that I could take control if anything went wrong. For this training, I wore a virtual-reality headset and sat in a chair that tilted and gyrated to simulate flying maneuvers. To “fly” this simulation I manipulated a joystick that was identical to the one in the cockpit of a BlackFly. Opener’s chief operating officer, Kristina L. Menton, and engineer Wyatt Warner took turns patiently explaining the operations of the vehicle and giving me challenging tasks to complete, such as hovering and performing virtual landings in a vicious crosswind.
The BlackFly is entirely controlled by that joystick, which is equipped with a trigger and also topped by a thumb switch. To take off, I squeeze the trigger while simultaneously pushing forward on the switch. The machine leaps into the air with the sound of a million bees, and with a surge of giddy elation I am climbing skyward.
Much more so than an airplane or helicopter, the BlackFly taps into archetypal human yearnings for flight, the kind represented by magic carpets, the flying cars in “The Jetsons,” and even those Mountain Banshees in the movie “Avatar.” I’ve had several unusual experiences in aircraft, including flying on NASA’s zero-gravity-simulating “Vomit Comet,” and being whisked around in a BlackFly was definitely the most absorbing and delightful. Gazing out over the Altamont Pass from an altitude of about 60 meters, I had a feeling of joyous release—from Earth’s gravity and from earthly troubles.
For technical details about the BlackFly and to learn more about its origin, go here.
The BlackFly is also a likely harbinger of things to come. Most of the startups developing eVTOLs are building vehicles meant to carry several passengers on commercial runs of less than 50 kilometers. Although the plan is for these to be flown by pilots initially, most of the companies anticipate a day when the flights will be completely automated. So specialized aircraft such as the BlackFly—designed to be registered and operated as “ultralight” aircraft under aviation regulations—could provide mountains of invaluable data on highly and fully automated flying and perhaps even help familiarize people with the idea of flying without a pilot. Indeed, during my flight, dozens of sensors gathered gigabytes of data, to add to the large reservoir Opener has already collected during many hundreds of test flights so far.
As of late February 2023, Opener hadn’t yet announced a retail price or an official commercial release date for the aircraft, which has been under development and testing for more than a decade. I’ll be keeping an eye out for further news of the company. Long after my flight was over I was still savoring the experience, and hoping for another one.
Special thanks to IEEE.tv for collaborating on production of this video.
Non-fungible tokens (NFTs) are the most popular digital assets today, capturing the attention of cryptocurrency investors, whales and people from around the world. People find it amazing that some users spend thousands or millions of dollars on a single NFT-based image of a monkey or other token, but you can simply take a screenshot for free. So here we share some freuently asked question about NFTs.
NFT stands for non-fungible token, which is a cryptographic token on a blockchain with unique identification codes that distinguish it from other tokens. NFTs are unique and not interchangeable, which means no two NFTs are the same. NFTs can be a unique artwork, GIF, Images, videos, Audio album. in-game items, collectibles etc.
A blockchain is a distributed digital ledger that allows for the secure storage of data. By recording any kind of information—such as bank account transactions, the ownership of Non-Fungible Tokens (NFTs), or Decentralized Finance (DeFi) smart contracts—in one place, and distributing it to many different computers, blockchains ensure that data can’t be manipulated without everyone in the system being aware.
The value of an NFT comes from its ability to be traded freely and securely on the blockchain, which is not possible with other current digital ownership solutionsThe NFT points to its location on the blockchain, but doesn’t necessarily contain the digital property. For example, if you replace one bitcoin with another, you will still have the same thing. If you buy a non-fungible item, such as a movie ticket, it is impossible to replace it with any other movie ticket because each ticket is unique to a specific time and place.
One of the unique characteristics of non-fungible tokens (NFTs) is that they can be tokenised to create a digital certificate of ownership that can be bought, sold and traded on the blockchain.
As with crypto-currency, records of who owns what are stored on a ledger that is maintained by thousands of computers around the world. These records can’t be forged because the whole system operates on an open-source network.
NFTs also contain smart contracts—small computer programs that run on the blockchain—that give the artist, for example, a cut of any future sale of the token.
Non-fungible tokens (NFTs) aren't cryptocurrencies, but they do use blockchain technology. Many NFTs are based on Ethereum, where the blockchain serves as a ledger for all the transactions related to said NFT and the properties it represents.5) How to make an NFT?
Anyone can create an NFT. All you need is a digital wallet, some ethereum tokens and a connection to an NFT marketplace where you’ll be able to upload and sell your creations
When you purchase a stock in NFT, that purchase is recorded on the blockchain—the bitcoin ledger of transactions—and that entry acts as your proof of ownership.
The value of an NFT varies a lot based on the digital asset up for grabs. People use NFTs to trade and sell digital art, so when creating an NFT, you should consider the popularity of your digital artwork along with historical statistics.
In the year 2021, a digital artist called Pak created an artwork called The Merge. It was sold on the Nifty Gateway NFT market for $91.8 million.
Non-fungible tokens can be used in investment opportunities. One can purchase an NFT and resell it at a profit. Certain NFT marketplaces let sellers of NFTs keep a percentage of the profits from sales of the assets they create.
Many people want to buy NFTs because it lets them support the arts and own something cool from their favorite musicians, brands, and celebrities. NFTs also give artists an opportunity to program in continual royalties if someone buys their work. Galleries see this as a way to reach new buyers interested in art.
There are many places to buy digital assets, like opensea and their policies vary. On top shot, for instance, you sign up for a waitlist that can be thousands of people long. When a digital asset goes on sale, you are occasionally chosen to purchase it.
To mint an NFT token, you must pay some amount of gas fee to process the transaction on the Etherum blockchain, but you can mint your NFT on a different blockchain called Polygon to avoid paying gas fees. This option is available on OpenSea and this simply denotes that your NFT will only be able to trade using Polygon's blockchain and not Etherum's blockchain. Mintable allows you to mint NFTs for free without paying any gas fees.
The answer is no. Non-Fungible Tokens are minted on the blockchain using cryptocurrencies such as Etherum, Solana, Polygon, and so on. Once a Non-Fungible Token is minted, the transaction is recorded on the blockchain and the contract or license is awarded to whoever has that Non-Fungible Token in their wallet.
You can sell your work and creations by attaching a license to it on the blockchain, where its ownership can be transferred. This lets you get exposure without losing full ownership of your work. Some of the most successful projects include Cryptopunks, Bored Ape Yatch Club NFTs, SandBox, World of Women and so on. These NFT projects have gained popularity globally and are owned by celebrities and other successful entrepreneurs. Owning one of these NFTs gives you an automatic ticket to exclusive business meetings and life-changing connections.
That’s a wrap. Hope you guys found this article enlightening. I just answer some question with my limited knowledge about NFTs. If you have any questions or suggestions, feel free to drop them in the comment section below. Also I have a question for you, Is bitcoin an NFTs? let me know in The comment section below
A retreat deep in an ancient Wiltshire forest offers jiu-jitsu, wild swimming and an emotional detox among like-minded strangers
I was an hour late by the time my car careened down a bumpy country lane into the ecovillage that would be my home for the weekend. The Easter getaway had turned my three-hour drive into five, rain lashing the windows throughout, and I arrived for my first wellness retreat about as far from zen as you could get.
One of the founders, the 29-year-old spiritual guru Josh Bolding, floats across the car park and greets me with a hug. I’d have preferred a beer, but I go with the man-hug. There is no time for small talk: I’m the last to arrive and he whisks me into the practice room, a wooden hut on stilts, where the other guests are settling into the first session on yin yoga and breathwork.
Continue reading...Australian-trained sprinter is squeezing in a run before Royal Ascot and may struggle against specialists at this trip
Most horses with targets at Royal Ascot later this month will be ticking over until the meeting opens on 20 June, but Australian-trained sprinter The Astrologist thrives on racing and will have a late prep for the Queen Elizabeth II Jubilee Stakes in the John of Gaunt Stakes at Haydock on Saturday.
Troy Corstens, who trains The Astrologist with his father, Leon, felt that the seven-year-old was short of fitness after an eight-week break when he finished down the field on his British debut in the Duke Of York Stakes last month.
Continue reading...Readers say they’d love to ditch their cars as Stuart Jeffries has, but it’s not easy in rural areas
Stuart Jeffries’ recognition that he shares the privilege of Londoners when it comes to public transport (I ditched my car – and improved my fitness, sleep and bank balance, 7 June) reminds us that this is a massive component of regional inequality that challenges the levelling-up waffle.
I gave up the car in November 2022, and I too am privileged – but in a completely different way. I know how to get the best out of a failing public transport system better than most people in West Yorkshire. I have studied bus and train timetables since childhood, I have done service on a transport authority and I have honed my limited IT skills to track wayward buses and trains. The latter is necessary because timetables often morph into fairytales.
Continue reading...A new wave of sex toys is designed to combine orgasmic joy with relief from dryness, tension and pain
At first glance, it could be mistaken for a chunky bracelet or hi-tech fitness tracker. But the vibrations delivered by this device will not alert you to a new message or that you have hit your daily step goal. Neither are they strictly intended for your wrist.
Welcome to the future of vibrators, designed not only for sexual pleasure, but to tackle medical problems such as vaginal dryness, or a painful and inflamed prostate gland in men.
Continue reading...Britain’s health is a national scandal, not just because of the state of the NHS, but because the government refuses to take action on our diets
In April 1994, the CEOs of the US’s seven biggest tobacco companies swore on oath before a Senate committee that nicotine was “not addictive”. At the time it was estimated that 3,000 American children were being induced by said companies to start smoking every day.
Last Monday, the BBC’s Panorama programme came close to repeating that scene with Britain’s food manufacturers. The products at issue are ultra-processed foods (UPF). Their makers’ denial of the harm these products may cause is as adamant as those tobacco execs’ once was, and the consequences could be equally lethal.
Simon Jenkins is a Guardian columnist
Continue reading...Having served a 22-month ban for failing a drugs test, the sprinter wants to make up for lost time after making a low-key return
Hidden in plain sight among the teenagers and pensioners who have paid their £14 entry fee to compete at the Lee Valley Sprint Night is a Team GB star who has not stepped onto the track since failing a drugs test at the Tokyo Olympics; a contrite athlete seeking a new beginning.
Cheered on by his close friend Nethaneel Mitchell-Blake – one of the British quartet who lost their Olympic 4x100 metres silver medal because of his actions – CJ Ujah does what for so long had been commonplace: he wins a race. Two, in fact.
Continue reading...A growing number of countries are preparing to shift from using the U.S. dollar in trade, which could undermine the greenback’s global supremacy.
The post Monetary Blowback: How U.S. Wars, Sanctions, and Hegemony Are Threatening the Dollar’s Reserve Currency Dominance appeared first on The Intercept.
A growing number of countries are preparing to shift from using the U.S. dollar in trade, which could undermine the greenback’s global supremacy.
The post Monetary Blowback: How U.S. Wars, Sanctions, and Hegemony Are Threatening the Dollar’s Reserve Currency Dominance appeared first on The Intercept.
There’s a lot of risk in deploying new technology for cutting-edge computer chips. So Intel executives were understandably cautious in executing a plan that next year simultaneously introduces both a new transistor—RibbonFET—and a new way of powering it—PowerVia.
To take some of the risk out of this high-wire act, the company has built and tested processor cores composed of Intel’s current generation of transistors combined with PowerVia. The resulting cores saw more than a 6 percent frequency boost as well as more compact designs and 30 percent less power loss. Just as important, the tests proved that including backside power doesn’t make the chips more costly, less reliable, or more difficult to test for defects. Intel is presenting the details of these tests in Tokyo next week at the IEEE Symposium on VLSI Technology and Circuits.
“We wanted to make sure we could derisk…understand everything about PowerVia, and then go the next step and integrate with RibbonFET,” says Ben Sell, Intel’s vice president of technology development.
PowerVia is Intel’s version of a technology called backside power delivery. Today, chips are constructed with the transistors at the surface of the silicon and all the interconnects that power them and transmit their data signals built above them. Backside power removes all the power-delivering interconnects to beneath the silicon. This has two main effects. First, it leaves more room for the data interconnects above the silicon. And second, the power interconnects can be made larger and therefore less resistive.
Backside power delivery moves the power interconnects from above the silicon to below it.Intel
That combination improves performance in a few ways. First, with an easier path for power to flow, circuits on the CPU experience less voltage droop; in other words, there is a smaller transient fall in voltage when demand for current increases from, say, a large block of logic switching on. With less droop, transistors can be run faster.
Second, cores can be made more compact, decreasing the length of interconnects between logic cells, which speeds things up. When the standard logic cells that make up the processor core are laid out on the chip, interconnect congestion keeps them from packing together perfectly, leaving loads of blank space between the cells. With less congestion among the data interconnects, the cells fit together more tightly, with some portions up to 95 percent filled. Sell says that’s a double-digit improvement. What’s more, the lack of congestion allowed some of the smallest interconnects to spread out a bit, reducing parasitic capacitance that hinders performance.
The 6 percent gain from these advantages is about half what’s typically delivered when a chipmaker scales down transistors from one technology node to the next. PowerVia delivers it with no change to the transistors.
Making PowerVia-enabled chips requires several extra steps and leads to the unusual result that there is hardly any silicon left in the chip. Things start out pretty normal: The transistors, which in this case are FinFETs made using the Intel 4 process, are constructed at the surface of the silicon, as usual. The main difference is that a group of deep, narrow holes are also drilled and then filled in with metal. These nano-TSVs (for through-silicon vias) will be important later. From there, layers of interconnect are formed above the transistors to link them together into logic cells and larger circuits. So far, so regular.
Then the process takes a turn. A blank silicon wafer, called a carrier wafer, is bonded to the top of those interconnects and the whole thing is flipped over. Then the bottom of the original wafer (now on top) is polished away until the ends of the nano-TSVs are exposed. At that point, layers of comparatively chunky interconnects are built up to connect to the nano-TSVs and form the backside power delivery network. These interconnect layers terminate in the bond pads that will link the chip to the package and the rest of the computer.
The resulting chip is thus made up of a large layer of blank silicon for support, a layer of data interconnects, a vanishingly narrow layer of silicon transistors, and a layer of power interconnects.
It’s hard to spot the silicon in this PowerVia-enabled processor. (Hint: It’s the bit of white in the middle.) Most of the chip is made up of the signal interconnects above and the much chunkier power interconnects below the transistors. Intel
You might expect that having to build interconnects on both sides of the silicon would make the cost of the chip shoot up. But early on, Intel saw a reason why that would not be the case, says Sell. The smallest, most tightly packed layer of interconnects, called M0, are also the costliest to produce. They can require more than one pass through chipmaking’s most expensive step, extreme ultraviolet lithography. But with no power interconnects to get in the way, the lines in the M0 layer could be six nanometers further apart than they are today. That may not seem like much, but it means it takes less EUV effort to make them. For the process to be introduced next year and for its successor, “the cost savings we get from not scaling so aggressively more than offsets the additional cost from the backside power-delivery process,” Sell says.
If the plans for PowerVia were going to work, the technology had to meet certain criteria, most of which have to do with not making things worse: Despite existing in a much thinner layer of silicon, the transistors had to work just as well; the power delivery network had to be just as reliable as those built on the front side of the silicon; the heat generated in the silicon couldn’t get out of hand, despite the transistors being sandwiched between interconnect layers; and the ability to debug ICs and spot design defects can’t be hampered.
It took some doing to meet these criteria. For example, the power-interconnect process had to be tweaked to keep from affecting the transistors. And Intel had to set some design rules to keep thermal issues in line. It also had to come up with new methods to make debugging work.
On top of all that, Intel engineers had to ensure that the PowerVia chips’ yield—the fraction of good chips per wafer—was on target to reach high-volume manufacturing, even though these particular chips will never be sold. The goal here was for the yield of Intel 4 PowerVia chips to match those of Intel 4 chips from 9 months ago. PowerVia chips were always going to lag, because any improvements to Intel 4’s yield would take time to translate to the PowerVia experiments. “We did a bit better than that,” says Sell. PowerVia’s yield curve follows Intel 4’s by only 6 months.
With the process for PowerVia worked out, the only change Intel will have to make in order to complete its move from Intel 4 to the next node, called 20A, is to the transistor. RibbonFET, Intel’s take on nanosheet, or gate-all-around, transistors, will then slot in to the already established interconnect scheme.
If all goes well, and Sell says all is going well, the 20A process will be making the company’s Arrow Lake CPUs in 2024. The following technology generation, called 18A, is meant for both Intel products and foundry customers.
Success would put Intel ahead of TSMC and Samsung, in offering both nanosheet transistors and backside power. Samsung has already moved to a gate-all-around device, and it’s unclear when it will integrate backside power. TSMC is scheduled to offer gate-all-around devices in 2025, but it won’t be adding backside power delivery until at least 2026.
Price and convenience are compared while taking on board the reaction of a young consumer
Children are expensive, even without a cost of living crisis to contend with. According to the Child Poverty Action Group’s most recent findings, the cost of raising a child until the age of 18 has reached £157,000 for a couple and £208,000 for lone parents.
Childcare costs can be extortionate, kids grow out of clothes in the blink of an eye, and activities such as swimming and football lessons all cost money. However, one area where parents are particularly feeling the pinch is with the price of food. The most recent official data showed that food and nonalcoholic drink prices jumped by 19% in the 12 months to April, meaning people are having to fork out more than ever to feed their children.
Continue reading...Donald Trump’s latest charges are just the beginning of his legal woes, but Republicans are standing by their man.
The post How Many Indictments Does It Take to Bring Down a Cult Leader? appeared first on The Intercept.
Gold futures settled lower on Friday, but held onto a modest gain for the week. The precious metal has been “consolidating after the recent run-up off the fourth-quarter lows,” said Adam Koos, president at Libertas Wealth Management Group. The pullback Friday was likely due to a combination of profit taking, combined with concerns about the Federal Reserve’s decision next week, and next month, on interest rates, as well as inflation numbers also due next week, he said. Gold for August delivery GCQ23 fell $1.40, or nearly 0.1%, to settle at $1,977.20 an ounce on Comex. Prices based on the most-active contracts gained 0.4% for the week, according to Dow Jones Market Data.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
The argument that markets will react badly to borrowing doesn’t wash – Rachel Reeves has to be open about using taxes
Today, Rachel Reeves announced that she is delaying plans to borrow £28bn a year for a green prosperity fund under a Labour government. There may be some influential people in the Labour party who never supported the plan in the first place – maybe because it looked so much like the 2019 manifesto. And now, perhaps as a result, we’re seeing any excuse being used to undermine it.
The argument being put forward is that the bond markets will react to Labour’s borrowing in the same way they responded to Liz Truss’s fantasy budget. This would make the necessary borrowing too expensive to deal with, and anyway, it’s impractical to spend on that scale in the early years of a government.
John McDonnell has been the Labour MP for Hayes and Harlington since 1997. He was shadow chancellor from 2015 to 2020
Continue reading...
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please
send us your events for inclusion.
Enjoy today’s videos!
The industry standard for dangerous and routine autonomous inspections just got better, now with a brand-new set of features and hardware.
[ Boston Dynamics ]
For too long, dogs and vacuums have existed in a state of conflict. But Roomba robots are finally ready to make peace. To celebrate Pet Appreciation Week (4–10 June), iRobot is introducing T.R.E.A.T., an experimental prototype engineered to dispense dog treats on demand. Now dogs and vacuums can finally be friends.
[ T.R.E.A.T. ]
Legged robots have better adaptability in complex terrain, and wheeled robots move faster on flat surfaces. Unitree B-W, the ultimate speed all-rounder, combines the advantages of both types of two robots, and continues to bring new exploration and change to the industry.
[ Unitree ]
In this demonstration, Digit starts out knowing there is trash on the floor and that bins are used for recycling/trash. We use a voice command “Clean up this mess” to have Digit help us. Digit hears the command and uses a large language model to interpret how best to achieve the stated goal with its existing physical capabilities. At no point is Digit instructed on how to clean or what a mess is. This is an example of bridging the conversational nature of Chat GPT and other LLMs to generate real-world physical action.
[ Agility ]
Battery endurance represents a key challenge for long-term autonomy and long-range operations, especially in the case of aerial robots. In this paper, we propose AutoCharge, an autonomous charging solution for quadrotors that combines a portable ground station with a flexible, lightweight charging tether and is capable of universal, highly efficient, and robust charging.
[ ARPL NYU ]
BruBotics secured a place in the Guinness World Records! Together with the visitors of the Nerdland Festival, they created the longest chain of robots ever, which also respond to light. Vrije Universiteit Brussel/Imec professor Bram Vanderborght and his team, consisting of Ellen Roels, Gabriël Van De Velde, Hendrik Cools, and Niklas Steenackers, have worked hard on the project in recent months. They set their record with a chain of 334 self-designed robots. The BruBotics research group at VUB aims to bring robots closer to people with their record. “Our main objective was to introduce participants to robots in an interactive way,” says Vanderborght. “And we are proud that we have succeeded.”
[ VUB ]
Based in Italy, Comau is a leading robot manufacturer and global systems integrator. The company has been working with Intrinsic over the past several years to validate our platform technology and our developer product Flowstate through real-world use cases. In a new video case study, we go behind the scenes to explore and hear firsthand how Comau and Intrinsic are working together. Comau is using Intrinsic Flowstate to assemble the rigid components of a supermodule for a plug-in hybrid electric vehicle (PHEV).
[ Intrinsic ]
Thanks, Scott!
GITAI has achieved a significant milestone with the successful demonstration of a GITAI, an inchworm-type robotic arm equipped with a tool-changer function, and a GITAI lunar robotic rover in a simulated regolith chamber, featuring a 7-ton regolith simulant (LHS-1E).
[ GITAI ]
Uhh, pinch points...?
[ Deep Robotics ]
Detect, fetch, and collect. A seemingly easy task is being tested to find the best strategy to collect samples on the Martian surface, some 290,000 million kilometers away from home. The Sample Transfer Arm will need to load the tubes from the Martian surface for delivery to Earth. ESA’s robotic arm will collect them from the Perseverance rover, and possibly others dropped by sample-recovery helicopters as a backup.
[ ESA ]
Wing’s AutoLoader for curbside pickup.
[ Wing ]
MIT Mechanical Engineering students in Professor Sangbae Kim’s class explore why certain physical traits have evolved in animals in the natural world. Then they extract those useful principles that are applicable to robotic systems to solve such challenges as manipulation and locomotion in novel and interesting ways.
[ MIT ]
I get that it’s slightly annoying that robot vacuums generally cannot clean stairs, but I’m not sure that it’s a problem actually worth solving.
https://gizmodo.com/migo-ascender-first-robot-vacu...
Also, the actual existence of this thing is super sketchy, and I wouldn’t give them any money just yet.
The fastest, tiniest, mouse-iest competition for how well robots can stick to smooth surfaces.
[ Veritasium ]
Art and language are pinnacles of human expressive achievement. This panel, part of the Stanford HAI Spring Symposium on 24 May 2023, offered conversations between artists and technologists about intersections in their work. Speakers included Ken Goldberg, professor of industrial engineering and operations research, University of California, Berkeley, and Sydney Skybetter, deputy dean of the College for Curriculum and Co-Curriculum and senior lecturer in theater arts and performance studies, Brown University. Moderated by Catie Cuan, Stanford University.
[ Stanford HAI ]
An ICRA 2023 Plenary from 90-year-old living legend Jasia Reichardt (who coined the term “uncanny valley” in 1978), linking robots with Turing, Fellini, Asimov, and Buddhism.
[ ICRA 2023 ]
Thanks, Ken!
Mo-Shing Chen, a world-renowned power engineering educator and researcher, died on 1 May at the age of 91.
The IEEE Fellow was a professor at the University of Texas at Arlington for more than 40 years. He founded the university’s Energy Systems Research Center in 1968 and served as its director until he retired in 2003.
Chen created UTA’s first Ph.D. program in electrical engineering in 1969, and it quickly became one of the nation’s largest and top-rated graduate programs in power systems engineering.
Chen’s research included the modeling of electrical loads, the effect of voltage control in energy savings, real-time testing to improve power system efficiency, computer representation of cogeneration systems, reducing efficiency losses in transmission lines, and voltage stability.
Through his work, he solved complex problems engineers were facing with power networks, from small, rural electric cooperatives to ones that serve large metropolitan areas including New York City’s Consolidated Edison Co.
He taught his students not only how to solve such problems but also how to identify and understand what caused the troubles.
Born in the village of Wuxing in China, Chen and his family moved to Taiwan in 1949 when he was a teenager. After Chen earned a bachelor’s degree in electrical engineering in 1954 from National Taiwan University in Taipei, he joined the Taiwan Power Co. as a power engineer in Wulai. There he became fascinated by difficult, real-world problems of power systems, such as frequent blackouts and sudden spikes of electric loads.
Deciding he wanted to pursue master’s and doctoral degrees in electrical engineering, Chen moved to the United States to do so at the University of Texas at Austin under the mentorship of Edith Clarke, an EE professor there. She had invented an early graphing calculator and worked on the design and construction of hydroelectric power systems including the Hoover Dam, located on the Nevada-Arizona border.
Clarke and Chen had lively discussions about their work, and they had mutual respect for one another. He studied under Clarke until she retired in 1957.
Chen earned his master’s degree in 1958 and his Ph.D. in 1962.
He joined UTA—then known as Arlington State College—in 1962 as an assistant professor of electrical engineering.
As a professor, Chen observed that electrical engineering programs at universities around the country were not meeting the needs of industry, so he founded UTA’s Power Systems Research Center. It was later renamed the Energy Systems Research Center.
He gained global recognition in the power industry through his intensive, two-week continuing-education course, Modeling and Analysis of Modern Power Systems, which he began teaching in 1967. Attendees learned how to design, operate, and stabilize systems. The course became the power industry’s hub for continuing education, attended by 1,500 participants from academia and industry. The attendees came from more than 750 universities and companies worldwide. Chen also traveled to more than 40 companies and universities to teach the course.
He mentored UTA’s first Ph.D. graduate, Howard Daniels, who became an IEEE life member and vice president of a multinational power company based in Switzerland. Chen went on to mentor more than 300 graduate students.
Chen this year was awarded one of UTA’s first College of Engineering Legacy Awards. The honor is designed to recognize a faculty member’s career-long performance and dedication to the university.
In 1968 he founded the Transmission and Substation Design and Operation Symposium. The event, still held today, serves as a forum for utility companies, engineers, contractors, and consultants to present and discuss trends and challenges.
He also created a distinguished-lecturer series at UTA and invited students, faculty, and industry engineers to campus to listen to speeches by power systems engineers including IEEE Fellow Charles Concordia and IEEE Life Fellow W.F. Tinney.
Chen said he was always cognizant that the primary purpose of a university was education, so before making any decision, he asked himself, “How will my students benefit?”
By the mid-1970s, the U.S. National Science Foundation consistently ranked UTA as one of the top power engineering programs in the country.
Chen said he believed any faculty member could teach top students, who generally need little help. A professor’s real service to society, he said, was turning average students into top-quality graduates who could compete with anyone.
Part of that process was recruiting, motivating, and mentoring students. Chen insisted that his graduate students have an office near his so he could be readily available for discussions.
Chen’s contagious enthusiasm and thorough understanding of power systems— along with a knack for communicating difficult concepts clearly, simply, and humorously—made him a popular professor. In 1976 he received the first Edison Electric Institute Power Engineering Educator Award. More than 50 of Chen’s students and colleagues endorsed him for the honor.
Chen founded the university’s first international visiting-scholars program in 1968. Through the program, more than 50 power systems researchers have spent a year at UTA, teaching and conducting research. Participants have come from China, Israel, Japan, Korea, Latvia, Macedonia, Spain, and Russia.
Chen was the principal investigator for more than 40 research projects at the Energy Systems Research Center. Many of them were supported by Consolidated Edison (ConEd) of New York and the Electric Power Research Institute, in Washington, D.C.
One of his first research projects involved creating a computer representation of an operational power system with Daniels. Running a computer was expensive in the late 1960s, and Chen and Daniels’ research helped decrease data acquisition costs from between US $10,000 and $20,000 to only 1 cent.
With that project, Chen quickly demonstrated his research value to the power industry.
In the first project Chen led for ConEd, he and his team created a computer representation of New York City’s underground electric power system. It was one of Chen’s favorite projects, he said, and he enjoyed looking back at his experiences with it.
“Before this study, computers were used to represent balanced systems, not unbalanced underground systems,” he once told me. “New York City is fundamentally a distribution system, not a transmission system. ConEd had paid $2 million to a different, very famous university to do this study, but it couldn’t deliver the results after two years. We bid $250,000 and delivered the results in nine months.”
ConEd’s CEO at the time said, “We asked for a Ford, and you delivered a Cadillac.” It was the beginning of a nearly 30-year relationship between Chen and the utility company.
Chen and his colleagues designed and built a small supervisory control and data acquisition system in the mid-1980s for a group of power companies in Texas. Such systems gather and analyze real-time data from power systems to monitor and control their equipment. Chen’s invention proved valuable when he and his team were modeling electric loads for analyzing power system stability, resulting in the reduction of blackouts.
He published more than 100 peer-reviewed papers, most of them in IEEE Transactions on Power Systems.
His awards included the 1984 IEEE Centennial Medal, an honorary professorship by eight universities in China and Taiwan, and an honorary EE doctorate in 1997 from the Universidad Autonoma de Nuevo Leon, in Mexico.
He was a member of the Texas Society of Professional Engineers, the American Society of Engineering Education, IEEE–Eta Kappa Nu, Tau Beta Pi, the New York Academy of Sciences, and Sigma Xi.
Shares of Hudson Pacific Properties Inc. HPP fell 0.1% in morning trading Friday, after the real estate investment trust (REIT) focused on “dynamic tech and media” cut its quarterly dividend in half to boost liquidity. Shareholders of record on June 20 will be paid the new dividend of 12.5 cents a share, down from 25 cents a share, on June 30. Based on recent stock prices, the new annual dividend rate implies a dividend yield of 9.54%, which compares with the yield for the Real Estate Select Sector SPDR exchange-traded fund XLRE of 3.64% and the implied yield for the S&P 500 SPX of 1.59%. The company said it has more than $800 million in total liquidity, and the new lower dividend will boost liquidity by $18 million.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Plane can accommodate up to 16 people and is aimed at super-rich who ‘want to enjoy the money while still alive’
Forget partying on the ground: the super-rich are being told to do it at 33,000ft by a multimillionaire Dubai hotelier launching a £10,000-an-hour “five-star party jet”.
Kabir Mulchandani, the founder and chair of the luxury hotel group FIVE, has bought a Airbus ACJ TwoTwenty and claims to have transformed it into a “boundary-breaking fusion of hospitality and private aviation”, complete with dancing area, king-size bed and shower.
Continue reading...An astonishing picture emerges of the town’s demise from ‘premier business location’ to bankruptcy
In the autumn of 2020, the Tory leader of Woking council announced he was stepping down. In his valedictory speech, David Bittleston insisted Woking was not merely the best council in the country but was going places. “Ahead of us, this borough has an exciting future,” he declared.
Bittleston’s self-congratulatory boosterism was par for the course. He and the town’s municipal leaders were signed up to a grandiose high-rise vision that would transform the modest commuter town in leafy Surrey into a glittering modern city, Singapore-style economic hub and “premier global business location”.
Continue reading...Facing questions about Gail Gitcho’s work as a foreign agent, the GOP-affiliated Women’s Democracy Network scrubbed her from its site.
The post GOP Lobbyist Claimed to Be “Empowering Women” — but Worked for Saudi Theocracy’s LIV Golf appeared first on The Intercept.
The fight could influence whether Georgia stays blue in 2024’s Senate and presidential races.
The post No One Believes in Cop City. So Why Did Atlanta’s City Council Fund It? appeared first on The Intercept.
Dutiful German generosity revealed in analysis of gratuity habits in six EU countries, the UK and US
In Germany it seems to be pretty much automatic, pretty much all the time. In France and Spain it all depends – presumably on social subtleties that you have to be French or Spanish to understand. In Italy, why would you even bother?
When, and how much, to tip is a question that has been vexing visitors to Europe for as long as people have been travelling around the continent. Outside their own country, it seems even Europeans don’t know the answer.
Continue reading...Longstanding members angry at being excluded from £340m cash giveaway, which starts next week
A £340m cash giveaway kicks off next week when one-off payments of £100 apiece will start appearing in the bank accounts of 3.4 million Nationwide building society customers.
However, the unprecedented payout has created a “haves” and “have nots” split within the society’s membership, with some longstanding customers and people holding multiple Nationwide products angry at being excluded.
Continue reading...Car-sharing company Turo late Friday updated its initial public offering filing, saying that revenue rose 30% to $186 million in first quarter, from $143 million in the year-ago period. That also compares with $747 million in revenue for all of 2022. Losses widened, however, to $24.3 million, or 76 cents a share, in the quarter, from $7 million, or 23 cents a share, a year ago. Turo, which publicly filed for its IPO in January 2022, said that as of March 31 it had more than 165,000 active “hosts,” or people and small businesses using the platform to rent their vehicles. “Many of our small business and professional hosts started their journey with us as consumer hosts and scaled their businesses as they saw success on our platform,” the company said. More than 3 million “guests,” or those who rented the cars, booked more than 19.1 million days on Turo’s platform in all of last year, the company said.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Tesla Inc. TSLA is considering a major investment in Spain, according to a slew of recent reports, including by Reuters and Spanish business publication CincoDias. CincoDias cited sources as saying the investment would be a new “gigafactory” for an estimated 4.5 billion euros ($4.83 billion) investment in the Valencia area. Reuters reported that a Valencia government spokesperson confirmed meetings and conversations with an unnamed company about a large automotive investment, but declined to give more details. Chief Executive Elon Musk has said that Tesla would choose the location of its next production facility by the end of the year. A Spain plant would join Tesla’s four major plants in U.S. and factories in Germany and China. Shares of Tesla zoomed to their 11th straight session of gains on Friday, poised to end the week up more than 15%. The stock has doubled this year, compared with an advance of around 12% for the S&P 500 index. SPX
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Agatha Christie explains why Donald Trump is the first president to be indicted.
The post Trump’s Mistake Was Committing Small Crimes by Himself appeared first on The Intercept.
BMO Capital Markets analyst Keith Bachman lifted his price target on shares of Microsoft Corp. MSFT to $385 from $347 Friday, writing that he was “increasingly confident” that the technology giant was cementing itself as a leader in artificial intelligence. “While we believe that MSFT remains in the early innings of its AI journey, we are encouraged by the company’s pace of development,” he wrote in a note to clients. Microsoft “continues to integrate AI Copilot throughout its portfolio, and we think Copilot can lead to incremental revenue generation opportunities over time.” Additionally, he estimates that AI could fuel 4% to 6% of upside to his growth estimates for Microsoft’s Office business over the next two years. Further, he thinks the company could reap benefits from Nvidia Corp. NVDA “We believe NVIDIA’s software, in tandem with its GPUs that power Azure Machine Learning, can enhance performance for a variety of AI use cases,” Bachman wrote. He rates Microsoft’s stock at outperform.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Swift investment would make any Labour government a climate and economic leader – so why the dithering?
As wildfire smoke engulfs much of the east coast of the US and average global temperatures continue to rise, with the world imminently facing some of the hottest years on record, it would be an error of judgment for the Labour party to delay its green investment pledge. Doing so would not only be a mistake for our economy and the climate, but also threaten Labour’s electoral prospects, given strong public demand for bold action on this issue.
Together with its world-leading promise to end all new domestic oil and gas developments, the Labour party’s £28bn-a-year investment pledge to green industries marks the scale of climate ambition we need to see from a future British government. These commitments mark Labour out as a potential major climate leader and, like Joe Biden’s landmark Inflation Reduction Act (IRA), the investment pledge clearly demonstrates that the party is in tune with the economic realities of today’s world.
Rebecca Newsom is head of politics at Greenpeace
Continue reading...As Russian oil and gas imports fell petrostates including UAE, Qatar and Saudi Arabia increased exports to UK
UK fossil fuel imports from authoritarian petrostates surged to £19.3bn in the year following Russia’s invasion of Ukraine, it can be revealed.
Efforts to end the purchasing of oil and gas from Russia appear to have resulted in a surge in imports from other authoritarian regimes, including Algeria, Bahrain, Kuwait, Libya, Qatar, Saudi Arabia and the United Arab Emirates (UAE), according to data from the Office for National Statistics analysed by DeSmog.
Continue reading...In 2013 and 2014, I wrote extensively about new revelations regarding NSA surveillance based on the documents provided by Edward Snowden. But I had a more personal involvement as well.
I wrote the essay below in September 2013. The New Yorker agreed to publish it, but the Guardian asked me not to. It was scared of UK law enforcement, and worried that this essay would reflect badly on it. And given that the UK police would raid its offices in July 2014, it had legitimate cause to be worried.
Now, ten years later, I offer this as a time capsule of what those early months of Snowden were like...
The IEEE Board of Directors shapes the future direction of IEEE and is committed to ensuring IEEE remains a strong and vibrant organization—serving the needs of its members and the engineering and technology community worldwide—while fulfilling the IEEE mission of advancing technology for the benefit of humanity.
This article features IEEE Board of Directors members Jill Gostin, Stephanie White, and Yu Yuan.
Director and Vice President, Member and Geographic Activities
Jill Gostin, an IEEE senior member, is director and vice president of IEEE Member and Geographic Activities.Nathan Gostin
Gostin is a dedicated mathematician and community leader whose work centers around systems engineering, algorithm assessment, and software testing and evaluation, specifically related to sensor systems. She is a principal research scientist in applied research programs pertaining to sensors and electromagnetic applications.
Her current work focuses on open architecture sensor systems, which allow systems to reuse existing technologies, providing the flexibility to quickly refresh an existing component of the system or swap in new technologies. Gostin uses a model-based systems engineering approach to develop the open architecture and the associated standard. By providing a standard to define the interfaces between components of the system, modifications and innovations can be quickly and easily incorporated.
Gostin, an active IEEE volunteer, has served on the IEEE Future Directions Committee, on the Board of Governors of the IEEE Computer Society and the IEEE Aerospace and Electronic Systems Society, and as vice president of finance for the IEEE Sensors Council, among many other IEEE roles. She believes in leading by example and says it is important to help others in advancing their career paths. Through the IEEE Computer Society, she was a representative to IEEE’s Women in Engineering program, which works to increase the representation of women in engineering disciplines. Gostin has also served as a STEM mentor to middle and high school math and science classes; and as a panelist for discussions on women in technology.
She has authored or co-authored multiple technical papers and has received multiple technical and service awards. In 2016, she was named Georgia’s Women in Technology Woman of the Year for mid-size businesses, an award recognizing women technology executives for their accomplishments as leaders in business, as visionaries of technology, and who make a difference in their community.
Director, Division X
IEEE Life Senior Member Stephanie White is director of IEEE Division X.William Pallack
White is an educator, technical leader, corporate manager, and entrepreneur. She is a pioneer in software and system requirements engineering—making significant and lasting contributions in the behavior modeling, requirements semantics, and requirements analysis fields, resulting in less costly and safer cyber-physical systems.
As a principal engineer of requirements and architecture, White was responsible for detecting errors in requirements on eight multi-million-dollar aircraft and space programs, producing higher quality specifications with lower cost and risk. Recognizing the need for verifiable methods that practicing engineers can use, she created scalable and practical modeling and analytic techniques based on formal methods. Her methods were used to ensure the correctness of aircraft and space programs.
Addressing the need for research in engineering systems where computer systems have an essential role, she founded the IEEE Technical Committee on Engineering of Computer-Based Systems in 1990. This area of research is now known as cyber-physical systems engineering.
White, a lifelong IEEE volunteer, has held many positions, including president of the IEEE Systems Council and vice president of technical activities for the IEEE Computer Society (also serving on its board of governors from 2006 to 2008). She wants to use her current position within IEEE to improve the return on members’ investment, broaden IEEE’s membership base, and advance technology for humanity.
Currently a senior professor emeritus, White has taught systems science, systems engineering, and computer science. She still participates in dissertation committees. White received the 2013 IEEE-USA Divisional Professional Leadership Award for inspiring women to study and work in the STEM fields and for leadership in diversity initiatives.
Director and President, IEEE Standards Association
An IEEE Senior Member, Yu Yuan is director and president of the IEEE Standards Association.Yu Yuan
Yuan is a scientist, inventor, and entrepreneur. His work in consumer technology, multimedia, virtual reality, the Internet of Things, and digital transformation has significantly impacted industry and society. His current work focuses on developing technologies, infrastructures, ecosystems, and resources needed for massively multiplayer ultra-realistic virtual experiences.
Yuan also works on building an international metaverse incubation and collaboration platform, providing access to knowledge and resources for metaverse development. His efforts have empowered a new generation of innovators and creators to push the boundaries of digital experiences—enabling a new era of immersive, interconnected, and intelligent technologies.
Yuan has been an IEEE volunteer for many years. His service in IEEE standards activities at different levels (working groups, standards committees, and higher-level governance) has been widely appreciated by standards developers, individual members, and entity members around the world. As the current president of the IEEE Standards Association (IEEE SA), he plays a pivotal role in shaping global standards, fostering collaboration, and driving innovation in the technology sector. He believes that IEEE SA has the opportunity for significant growth and to become a stronger global influence. He is committed to encouraging, supporting, and protecting innovation in standards and the standards development process.
Yuan is also a member of the IEEE Consumer Technology Society and a member-at-large on the society’s board of governors. From 2015-2020, he led the IEEE Consumer Technology Society Standards Committee to grow the society’s standards activities from zero to a top-level among IEEE technical societies and councils. The committee received the 2019 IEEE SA Standards Committee Award for exceptional leadership in entity-based standards development and industry engagement in consumer technology.In an interview with The Intercept, the ousted Pakistani prime minister, just released from arrest, accuses the country’s military of deepening a political crisis.
The post Imran Khan: U.S. Was Manipulated by Pakistan Military Into Backing Overthrow appeared first on The Intercept.
Finance minister says she was in contact with David Sharaz but did not know the full allegations or decide ‘to weaponise’ them
The finance minister, Katy Gallagher, has insisted she did not mislead parliament over her knowledge of Brittany Higgins’ rape allegation.
On Saturday she said that while she had been in contact with Higgins’ partner, David Sharaz, and was aware of some details of the story before it broke, she had not known the full allegations nor had she “made a decision to weaponise it”.
Sign up for Guardian Australia’s free morning and afternoon email newsletters for your daily news roundup
Continue reading...While transition to wind energy could benefit the local area, private interests are set to create wealth elsewhere
Giant primary-coloured oil platform supply vessels fill almost every bay in Aberdeen’s tightly packed city centre port. For the two marine traffic controllers sitting at the very top of the glass tower overlooking the congested harbour, it is like an enormous high-stakes round of the classic computer puzzle game Tetris.
“It’s been busy all morning. We’ve only got a couple of berths free [in the north harbour] and the south harbour is full already. There are a few vessels out at sea waiting for berths,” says one of the controllers.
Continue reading...Money will go to councils across Britain to help Ukrainians secure private rented housing and find work
A £150m fund to help Ukrainians into their own homes has been announced by the UK government.
More than 124,000 people have arrived in the UK under the Homes for Ukraine scheme since Russia invaded Ukraine in February last year.
Continue reading...Biogen Inc. BIIB shares rallied in the extended session late Friday following a full-day halt after the biotech company received a recommendation from a Food and Drug Administration advisory committee to approve an Alzheimer’s treatment it makes with Eisai Co. ESALF Biogen shares rallied as much as 9% after hours, after spending the regular session halted at $308.88. Eisai shares finished Friday up 9.4% at $81.03. On Friday, the FDA’s Peripheral and Central Nervous System Drugs Advisory Committee voted unanimously to recommend the companies’ drug Leqembi to treat Alzheimer’s disease. While the FDA is not bound to committee recommendations, the agency generally follows them. Approval of the drug is expected by July 6.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Chase Corp. CCF rallied more than 5% in the extended session Friday after The Wall Street Journal reported that the specialty-chemicals maker is working with advisers on a potential sale. According to the report, which cited people familiar with the matter, Chase has received multiple bids from private-equity firms and other industrial companies. One of the private-equity bids comes from Pritzker Private Capital, the report said. Pritzker Private Capital is a family-owned investment firm connected to the family of Illinois Gov. J.B. Pritzker and others. Chase Corp.’s market capitalization hovered at around $1.17 billion, according to FactSet as of late Friday. The stock has gained about 43% so far this year, compared with an advance of around 12% for the S&P 500 index. SPX
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
U.S. stock indexes finished higher on Friday with the Nasdaq Composite COMP booking its longest weekly winning streak since November 2019, while the S&P 500 SPX extended gains after technically exiting bear-market territory, logging fourth straight weekly advance. On Friday, the Dow Jones Industrial Average DJIA rose 43 points, or 0.1%, to end at 33,877, while the S&P 500 advanced 0.1%, to finish at 4,298. The Nasdaq was up 0.2%.The large-cap S&P 500 index Thursday officially exited its longest bear-market run since 1948, closing 20% above last year’s trough in October.For the week, the S&P 500 posted a 0.4% gain and its fourth positive week in a row. It was the index’s longest weekly winning streak since August 12, 2022. The Nasdaq Composite jumped 0.1%, while the Dow industrials rose 0.3% on a weekly basis, according to Dow Jones Market Data.Investors looked ahead to the May inflation data set for release next Tuesday, along with the Federal Reserve’s monetary policy decision due Wednesday afternoon. Markets priced in a 70% probability that the Fed will leave interest rates unchanged at a range of 5.0% to 5.25% after its meeting on June 14, according to the CME FedWatch tool.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Eisai Co. Ltd. ESALF shares were up 9.4% Friday after advisers to the U.S. Food and Drug Administration voted unanimously in favor of the Eisai and Biogen BIIB Alzheimer’s treatment Leqembi. The panel of independent experts said that a clinical study had verified the clinical benefit of Leqembi, also known as lecanemab. The treatment got a green light under the FDA’s accelerated approval program in January. An FDA decision on traditional approval is expected by July 6. Advisory committee votes are not binding, but the FDA often follows committee recommendations. Biogen stock trading was halted Friday during the advisory committee meeting.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
The U.S. Energy Department on Friday said that it awarded contracts for the previously announced plan to purchase 3 million barrels of crude oil for the nation’s Strategic Petroleum Reserve. The agency is purchasing the oil for an average price of about $73 a barrel and the oil will be delivered in August. It also announced plans for an additional purchase of 3.1 million barrels of oil for the Big Hill SPR site this September, as part of President Joe Biden’s “replenishment strategy” following his historic release from the SPR in the wake of the Russia-Ukraine war’s disruption to global oil supplies. U.S. crude benchmark West Texas Intermediate for July delivery CLN23 settled at $70.17 a barrel on the New York Mercantile Exchange on Friday, down $1.2, or 1.6%, for the session.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of 3M Co. MMM dropped 1.2% in afternoon trading Friday, after the maker of Post-it Notes, Scotch Tape and N95 facemasks said the Indiana bankruptcy court dismissed the bankruptcy filing of subsidiary Aearo Technologies, which made the Combat Arms earplugs that allegedly resulted in hear loss and tinnitus. Aearo, which 3M acquired in 2008, had filed for bankruptcy in July 2022 to establish a trust to resolve all claims, which could be in the billions of dollars, but lawyers for the plaintiffs filed to dismiss the bankruptcy, calling it “contrived.” On Friday, 3M and Aearo said they will pursue an appeal of the dismissal ruling, and will continue to defend the product in litigation. Bryan Aylstock, the lead plaintiffs’ counsel, said in an emailed statement to MarketWatch: “Judge Graham’s ruling rightly repudiates 3M’s cowardly attempt to delay justice for the hundreds of thousands of veterans harmed by the company’s dangerously defective earplugs. This gambit by 3M was a gross misuse of the bankruptcy courts, and we are pleased Judge Graham rightly dismissed it.” 3M’s stock has shed 17.0% year to date, to make it the worst performer in the Dow Jones Industrial Average DJIA this year.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Oil futures declined on Friday to tally a loss of more than 2% for the week. Prices had started the week moving higher after Saudi Arabia said it would cut output by an additional 1 million barrels per day in July. However, “traders faded the move,” as the Saudi cut would only remove one-third of a single day’s worth of global oil production over the course of July, said Tyler Richey, co-editor at Sevens Report Research. That will “not meaningfully impact supply and demand dynamics.” July West Texas Intermediate crude CLN23 fell $1.12, or 1.6%, to settle at $70.17 a barrel on the New York Mercantile Exchange. For the week, prices based on the front-month contract fell 2.2%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Delta Air Lines Inc. DAL approach the end of the regular session Friday poised to achieve their longest winning streak on record, up for an 11th trading day. The stock has gained more than 13% in the period, and a close at Friday’s current levels would be Delta stock’s highest since March 8, when it closed at $39.73. Delta and other major U.S. airlines were in the black on Friday, with the U.S. Global Jets ETF looking at weekly gains of nearly 4%. U.S. airlines are bracing for a busy summer travel season
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Dish Network Corp. DISH were declining again Friday, down about 12% in afternoon action to pace S&P 500 SPX laggards. The shares fell 4.5% in Thursday’s session. The New York Post reported late Thursday that the company was looking to shed assets in a bid to meet its commitment to reaching 70% of the U.S. with its 5G network by the end of June. The report discussed skepticism about the company’s ability to sell enough assets to make a difference. Separately, Dish announced Friday morning that it would be offering its new Infinite Unlimited+ wireless subscription for $50 a month.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
The federal indictment of former President Donald Trump in a classified documents probe has been unsealed. Earlier Friday, Trump shook up his legal team in the wake of the late-Thursday indictment.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Soybean futures were on track Friday to settle higher for a fourth straight session, at their highest since mid-May. The U.S. Department of Agriculture left its forecasts for domestic soybean production and demand unchanged in its World Agricultural Supply and Demand Estimates report. Still, “real supply and demand is tighter than what the USDA is reporting,” said Darin Newsom, Barchart senior market analyst. “We can see that in the inverted futures spreads, strong basis (difference between cash and futures), and [the] cash market itself,” he said. Now, as the El Nino climate pattern emerges and the market sees global balance sheets improve, “markets are going to be more focused on the demand side of the equation,” said Jake Hanley, managing director and senior portfolio strategist at Teucrium. The most-active July soybean contract SN23S00 rose 21 ¾ cents, or 1.6%, to $13.85 a bushel, poised for the highest most-active contract finish since May 15, FactSet data show.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Blue Apron Holdings Inc. APRN soared 53.3% in volatile midday trading Friday, after the meal-kit company announced the closing of its previously announced deal in which the company transferred its operational infrastructure to fresh meal provider FreshRealm. The stock has been halted three times for volatility since the open. The stock’s rally comes a day after a one-for-12 reverse stock split took effect, which effectively multiplied the stock price by 12, so it could bring the company into compliance with the New York Stock Exchange’s minimum-bid listing requirement. The stock closed at about 52 cents on June 7 prior to the reverse split, then closed at $5.35 on June 8 to reflect a 15.0% drop on the day. With the closing of the FreshRealm deal, Blue Apron said it received $25 million in cash upfront, and is eligible to receive up to $25 million if certain milestones are achieved. The company with the payment it has “eliminated its debt.” The stock has dropped 17.7% year to date, while the S&P 500 SPX has gained 11.9%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
The U.S.-listed hares of Advanced Health Intelligence Ltd. AHI blasted nearly six-fold higher on massive volume in midday trading Friday, despite no news released by the Australia-based provider of personalized health care services to smartphone users. The stock soared 474.6% toward the highest close since February 2022. Trading volume exploded to an already-record 82.96 million shares, compared with the full-day average over the past 30 days of about 65,200 shares. The stock has been halted nine times for volatility since the open. The company did not immediately respond to a request for comment. On May 19, the company was asked by the Australian Securities Exchange if it was aware of any information to explain the recent trading of the stock, as it soared 16.6% on relatively high volume, and the company said it is “not aware of any information not announced to the market” that might explain the move. The stock has run up 334.5% year to date, while the iShares MSCI Australia exchange-traded fund EWA has ticked up 0.6% and the S&P 500 SPX has gained 12.0%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Readers say they’d love to ditch their cars as Stuart Jeffries has, but it’s not easy in rural areas
Stuart Jeffries’ recognition that he shares the privilege of Londoners when it comes to public transport (I ditched my car – and improved my fitness, sleep and bank balance, 7 June) reminds us that this is a massive component of regional inequality that challenges the levelling-up waffle.
I gave up the car in November 2022, and I too am privileged – but in a completely different way. I know how to get the best out of a failing public transport system better than most people in West Yorkshire. I have studied bus and train timetables since childhood, I have done service on a transport authority and I have honed my limited IT skills to track wayward buses and trains. The latter is necessary because timetables often morph into fairytales.
Continue reading...The Justice Department unsealed charges against two Russian nationals Friday, accusing them of hacking the now-defunct Mt. Gox cryptocurrency exchange to steal what at the time was nearly half a billion dollars in bitcoin BTCUSD and conspiring to launder the proceeds.The DOJ alleges that Alexey Bilyuchenko and Aleksandr Verner gained unauthorized access to the exchange starting in 2011 and over the next three years illegally transferred 670,000 bitcoins to addresses controlled by them.“As cyber criminals have become more sophisticated in their methods of thievery, our career prosecutors and law enforcement partners, too, have become experts in the latest technologies being abused for malicious purposes,” said Damian Williams, the U.S. Attorney for the Southern District of New York, in a statement.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
JPMorgan Chase & Co. JPM Chief Executive Officer Jamie Dimon may be required to provide a new testimony as part of a lawsuit against the bank over dealings with the sex-trafficker Jeffrey Epstein, as requested by Epstein’s lawyers, as CNBC reported. JPMorgan’s stock rose 0.3% toward a six-week high in midday trading Friday. The lawyers, who deposed Dimon last month, said the bank has “failed to expeditiously produce documents” from files of key witnesses and has “strategically withheld” documents, according to documents provided in the CNBC report. In late-May, Dimon had testified that he had never heard of Jeffrey Epstein and his crimes until the financier was arrested in 2019, a statement that some have disputed, as the Associated Press has reported.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Former President Donald Trump said in a Friday post on his Truth Social platform that he’s parting ways with some lawyers and now will be represented by attorney Todd Blanche and a firm to be named later, with the move coming after he said said late Thursday that he has been indicted in Florida over his handling of classified documents. “I want to thank Jim Trusty and John Rowley for their work, but they were up against a very dishonest, corrupt, evil, and ‘sick’ group of people, the likes of which has not been seen before. We will be announcing additional lawyers in the coming days,” Trump said.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
New York Attorney General Letitia James announced Friday the final approval of $17.3 billion in national settlement agreements with drug-store chains CVS Health Corp. CVS and Walgreens Boots Alliance Inc. WBA, and with drug makers Teva Pharmaceutical Industries Ltd. TEVA and AbbVie Inc.’s ABBV Allergan. The agreements include more than $1 billion for the state of New York. The agreements finalize previous agreements reached with the companies, including $523 million from Teva and more than $548 million from CVS and Walgreens. The agreements will become effective in the coming weeks. “These funds will help with opioid abatement, education, and treatment efforts in our communities,” AG James said. Shares of CVS fell 0.2% in morning trading, Walgreens’ stock lost 1.1%, Teva shares eased 0.3% and AbbVie’s stock edged up 0.4%. AbbVie’s acquisition of Allergan had closed in May 2020.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
U.S. stocks opened mostly higher Friday, with the S&P 500 edging up after on Thursday exiting bear-market territory, as investors look ahead to next week’s inflation report and the Federal Reserve’s policy meeting. The Dow Jones Industrial Average DJIA was down less than 0.1% soon after the opening bell, while the S&P 500 SPX gained 0.3% and the Nasdaq Composite COMP rose 0.5%, according to FactSet data, at last check. Next week, investors will get a reading on Tuesday from the consumer-price index on May inflation and the Fed will announce its decision on interest-rate policy on Wednesday.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Sientra Inc. SIEN skyrocketed 82.3% toward a seven-month high on heavy volume to pace all premarket gainers Friday after the medical aesthetics company after the U.S. Food and Drug Administration granted 510(k)-clearance for its AlloX2 Pro Tissue Expander. Trading volume ballooned to 4.2 million shares, compared with the full-day average of about 328,900 shares. The 510(k) clearance means Sientra’s device is “substantially equivalent” to another device that has been cleared for marketing. “This innovation allows the AlloX2 Pro to be labeled as MRI-conditional, making it the only tissue expander cleared in the United States for exposure to magnetic resonance imaging, an important screening tool for breast reconstruction patients,” said AlloX2 inventor Thomas McClellan. The stock has dropped 13.8% year to date through Thursday, while the S&P 500 has gained 11.8%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Mangoceuticals Inc. MGRX fell 6.7% in premarket trading, to extend their sharp pullback from the previous session’s intraday high. The stock had rocketed as much as 60.8% to an intraday high of $2.38 soon after Thursday’s open, but closed up just 10.8%, after the erectile dysfunction (ED) drug maker announced a sponsorship deal with Barstool Sports. Trading volume had spiked to 44.9 million shares on Thursday, compared with the full-day average before the rally of about 376,500 shares. The stock, which has had volume of 93,200 shares before Friday’s open, was on track to open about 36% below Thursday’s intraday high. The percent of the stock’s public float, or number of shares available for trading, that have been shorted (bearish bets) is 2.6%. The stock went public on March 21.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Carvana Co.’s stock CVNA is up 1% Friday, and is one of the most heavily traded in the premarket, after the stock jumped 56% in its previous session on a hiked outlook from the car seller. William Blair analyst Sharon Zackfia on Friday reiterated a market perform rating on Carvana and said the company’s progress is encouraging, but she’s seeking improved visibility on liquidity and free cash flow generation before any potential stock upgrade. William Blair upped its second-quarter adjusted gross profit per unit (GPU) estimate for Carvana to about $6,040 versus nearly $5,100 previously. William Blair also increased its projection for Carvana’s adjusted earnings before interest, taxes, depreciation and amortization to nearly $83 million, from an earlier view for a loss of $6 million on second-quarter used units sold of 78,000.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Jefferies analysts on Friday projected a continuation of “muted” trends in investment banking, although some encouraging signs are emerging in advising on corporate mergers and acquisitions. Equity capital markets activity “is the one bright spot” as analysts project results for the second quarter based on recent deal activity. All told, investment banking fees are down 22% from year-ago levels, with trading proxies for the second quarter pointing to softness in investment banking and sales & trading. Equity capital markets has shown “meaningful improvement” over the year-ago quarter, while advisory revenue has declined as an offset, but is “showing green shoots in deal and volumes,” Jefferies analysts said. Jefferies said recent guidance generally implies that sales and trading revenue will drop 20% to 30% given declining volatility. Fixed income, currency and commodity trading “is holding up better given the rates debate,” analysts said.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of Fisker Inc. FSR rose 1.4% in premarket trading Friday, after the electric vehicle maker announced plans to enter the China market. The company said it plans to open a delivery center in 2023, and start deliveries of its Fisker Ocean sport-utility vehicle (SUV) in the first quarter of 2024. “After beginning deliveries in Europe and with first vehicles coming to our US customers on June 23, we are excited to move into the Chinese market later this year,” said Chief Executive Officer Henrik Fisker. “We expect China to be an important growth market for EVs in the future and believe our vehicles will be very appealing.” Fisker’s stock has dropped 21.6% year to date through Thursday, while the Global X Autonomous and Electric Vehicles exchange-traded fund FSR has run up 25.9% and the S&P 500 SPX has gained 11.8%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Esther Ghey says she felt overwhelmed by support after her trans daughter’s death and has found comfort in outdoor swimming
The mother of the transgender teenager Brianna Ghey says she has found solace in cold water swimming as she tries to come to terms with her daughter’s brutal death.
Esther Ghey is taking part in Saturday’s Great North Swim in Windermere, in the Lake District, raising money for the Mindfulness in Schools Project (MiSP).
Continue reading...This replaces a previous item that incorrectly reported the name of Donald Trump’s social media company. It has been corrected.Shares of Digital World Acquisition Corp. DWAC, the special-purpose acquisition company (SPAC) looking to take Donald Trump’s Truth Social platform public, climbed 2.6% in morning trading Friday, after the former president said he’s been indicted in the federal investigation into classified documents. Trump has been summoned to appear in federal court on June 13. After Trump was found liable for sexual abuse and defamation on May 9, the SPAC’s stock rose 3.6%, and climbed 7.5% over three days to close May 11 at $13.93, before pulling back. A merger with Digital World Acquisition and Trump Media & Technology Group has been in the works since October 2021. Earlier this week, Digital World Acquisition said its board of directors approved an extension for when the company would be required to close a merger to Sept. 8, 2023 from June 8. The SPAC’s stock has tumbled 69.7% over the past 12 months, while the S&P 500 SPX has gained 7.2%.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Shares of some electric-vehicle charging companies were moving lower in Friday’s premarket trading after Tesla Inc. TSLA said it would open its charging network to General Motors Co. GM ChargePoint Holdings Inc. shares CHPT were down more than 3% premarket, while EVgo Inc. shares EVGO were down more than 4%. Blink Charging Co.’s stock BLNK was down 0.5%. GM said Thursday that owners of its cars would have access to a network of 12,000 Tesla “Superchargers” within North America. Tesla and Ford Motor Co. Fpreviously reached a similar arrangement.
Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.
Rufo’s Documentary Foundation received an influx of untraceable money in 2021, as his national profile grew.
The post Funded by Dark Money, Chris Rufo’s Nonprofit Stokes the Far Right’s Culture War appeared first on The Intercept.
A prominent set of progressive leaders are coming to the defense of Colombia’s Gustavo Petro, whose administration is facing a cascading series of struggles.
The post Group of Global Leftist Leaders Warns “Soft Coup” Is Underway in Colombia appeared first on The Intercept.
Political messaging expert Anat Shenker-Osorio breaks down the art of reframing the debate for progressives to win.
The post A Dmitri Rebuttal by Messaging Expert Anat Shenker-Osorio appeared first on The Intercept.
Newcastle-based baker makes second attempt to win over Saltash after franchise store failed
Saying that feelings run high about Greggs in Cornwall is an understatement. A local critic memorably described the company as the “devil’s spawn” when it dared to set up shop in Truro.
But the Newcastle-based baker has not been cowed and its fourth shop in the county opens in Saltash on Saturday. It is Greggs’ second attempt to win over the town, after a franchise store that opened in 2018 closed within a year.
Continue reading...More pain could follow the calamities of Wasps, Worcester and London Irish but the drive exists to fight for rugby’s future
Sometimes it is not the iceberg’s fault. Had the captains of some of English club rugby’s largest vessels been more focused on avoiding this season’s multiple shipwrecks they could easily have steered a more prudent course. Hindsight always helps but if your outgoings constantly exceed your income you are bound to sink eventually, as Worcester, Wasps and now London Irish can testify.
Most painful for those most deeply affected, perhaps, is that even the most myopic of lookouts could recognise this ever-present threat. Yet for whatever reason – arrogance, selfishness, greed, complacency, poor governance – the clubs and their governing body remained in thrall to the same old flawed model. Rich benefactor equals rugby success, right? Not if they ignore the basic tenets of sound business practice it won’t.
Continue reading...Ex-Serco chief Rupert Soames says financial support was for ‘friend’ and prospective MP Angus MacDonald
Rupert Soames, the grandson of the Conservative wartime prime minister Sir Winston Churchill, has donated nearly £5,000 to a prospective Liberal Democrat MP.
Soames, who spent most of his career in the City, most recently running outsourcer Serco, gave £4,999 in financial support to the Liberal Democrats in March, according to official records released this week.
Continue reading...State-led public investment is needed to repair a decade of cuts. Labour should say so, not cleave to failed orthodoxies
The gap between the political narrative and life as experienced by the average voter is widening dramatically. The United Kingdom faces serious economic, environmental and social crises that will deepen without shifts in policy. Yet there is little sense of impending doom among the country’s politicians.
A decade of upheaval has produced not radical change, but a renewal of a failed consensus. This suits the Conservative party, which, after 13 years in power, offers the dead weight of bankrupt intellectual habits. However, Labour’s U-turn over one of its rare transformational policies, to spend £28bn a year from day one of being in office on green investment, leaves it looking pusillanimous and complacent about its poll lead.
Continue reading...The £28bn delay caps weeks of turmoil over Labour’s green ambitions, but if he’s serious about them, the leader will need to get used to it
A U-turn on the eve of a major policy announcement is not usually part of the plan for a government in waiting. Later this month the Labour leader, Keir Starmer, will set out his pitch on energy, jobs and net zero, hoping to place a green economy at the centre of his vision for revitalising the UK.
But with just weeks to go, his shadow chancellor, Rachel Reeves, admitted on Friday that the key plank of that vision – the party’s much-heralded flagship commitment to spend £28bn a year on green investment – would be delayed. She blamed the economic mess being left by the Conservative party, and insisted the target would be met in the second half of a Labour parliament.
Continue reading...Readers respond to Rowan Atkinson’s growing disillusionment with electric vehicles
Andrew Gould’s letter (4 June) highlights one flaw in Rowan Atkinson’s critique of electric cars (I love electric vehicles – and was an early adopter. But increasingly I feel duped, 3 June). Another serious flaw was to suggest it would be “sensible” to use electricity to produce synthetic fuels for petrol engines, rather than use electric cars.
This would be highly inefficient. A Guardian article last month (E-fuels: how big a niche can they carve out for cars?, 5 May) noted that only about 16% of the electricity used to produce synthetic fuels ends up in car-propulsion, compared with 77% for a battery-electric vehicle. To put this another way: the electricity needed to run one petrol car on synthetic fuel could run nearly five equivalent electric cars.
Continue reading...Poor box office performance reflects broader challenge for Hollywood as it vies with domestic productions
The poor performance of Disney’s The Little Mermaid at the Chinese box office has reopened questions on Hollywood’s increasing difficulties in the world’s second-largest economy and the role racism has played in the film’s reception.
The live action remake has grossed just $3.6m (£2.9m) since its release in Chinese cinemas on 26 May, according to Box Office Mojo.
Continue reading...AustralianSuper, Australian Retirement Trust, Hesta and Aware Super say they won’t enter into new contracts with the firm
Australia’s biggest superannuation funds have either frozen, or are reviewing, future work contracts with PricewaterhouseCoopers Australia, as the fallout from the tax leaks scandal proves costly for the embattled firm.
Four of the country’s biggest funds, AustralianSuper, Australian Retirement Trust, Hesta and Aware Super, say they will not enter into new contracts with PwC, after the professional services firm used confidential information obtained through its work for the government for commercial gain.
Sign up for Guardian Australia’s free morning and afternoon email newsletters for your daily news roundup
Continue reading...Far from helping customers by absorbing soaring food costs, supermarket chiefs and shareholders are enjoying a bonanza
In recent weeks, supermarket spin doctors have been rolling out chief executives to counter Unite research that revealed how UK supermarkets are profiteering at the expense of their customers. The latest in this long line of protesting CEOs was Simon Roberts, chief executive of Sainsbury’s. He was asked on the BBC if the supermarket had been guilty of profiteering: “Absolutely not” was his strident denial. That denial lost some of its credibility this week when Sainsbury’s announced that Simon Roberts’ earnings leaped 40% last year to nearly £5m.
And there we have it. Facts will out. Roberts’ bonanza bonuses are actually a boardroom reward for the delivery of bumper profits in recent years. How else to explain it? Britain’s CEOs are never done telling us that their skyscraper salaries are index-linked to their blinding achievements delivering for shareholders.
Sharon Graham is the general secretary of Unite
Continue reading...Britain’s health is a national scandal, not just because of the state of the NHS, but because the government refuses to take action on our diets
In April 1994, the CEOs of the US’s seven biggest tobacco companies swore on oath before a Senate committee that nicotine was “not addictive”. At the time it was estimated that 3,000 American children were being induced by said companies to start smoking every day.
Last Monday, the BBC’s Panorama programme came close to repeating that scene with Britain’s food manufacturers. The products at issue are ultra-processed foods (UPF). Their makers’ denial of the harm these products may cause is as adamant as those tobacco execs’ once was, and the consequences could be equally lethal.
Simon Jenkins is a Guardian columnist
Continue reading...Jeremy Hunt hopes suspending energy profits levy if Brent crude falls below $71.40 a barrel will aid investment
Jeremy Hunt has handed the North Sea oil and gas industry a “get-out” clause from the windfall tax on fossil fuel profits if wholesale energy market prices fall back to normal levels.
The Treasury set out the change before a meeting with oil companies including Equinor, BP, Shell and Total in Aberdeen on Friday afternoon, after months of warnings from the North Sea industry that the windfall tax would threaten investment and jobs.
Continue reading...Sushiro says business badly damaged by video of teenager licking soy sauce bottle and wiping saliva on passing food
A sushi chain in Japan is seeking ¥67m (£383,280) in damages from a diner who filmed himself licking a soy sauce bottle and wiping saliva on a slice of fish at one of its restaurants, part of a wave of “sushi terrorism” that scandalised the country’s budget food industry.
Sushiro, Japan’s biggest operator of revolving sushi restaurants, filed the suit with a court in Osaka, according to the Kyodo news agency, arguing that it had suffered financial losses after the incident triggered public fears over food hygiene.
Continue reading... ![]() | submitted by /u/777fer [link] [comments] |
Democrats and Republicans have previously joined hands to support the invasion of Iraq, huge corporate tax cuts, and more.
The post The Debt Limit Bill: Yet Another Triumph for Bipartisanship appeared first on The Intercept.
The intelligence report described the demonstrations as a “violent far-left occupation” — a phrase copied directly from an article by Ngo a day earlier.
The post DHS Intel Report on Cop City Protesters Cribbed Far-Right Activist Andy Ngo appeared first on The Intercept.
A hospital visit can be boiled down to an initial ailment and an outcome. But health records tell a different story, full of doctors’ notes and patient histories, vital signs and test results, potentially spanning weeks of a stay. In health studies, all of that data is multiplied by hundreds of patients. It’s no wonder, then, that as AI data processing techniques grow increasingly sophisticated, doctors are treating health as an AI and big-data problem.
In one recent effort, researchers at Northwestern University have applied machine learning to electronic health records to produce a more granular, day-to-day analysis of pneumonia in an intensive care unit (ICU), where patients received assistance breathing from mechanical ventilators. The analysis, published 27 April in the Journal of Clinical Investigation, includes clustering of patient days by machine learning, which suggests that long-term respiratory failure and the risk of secondary infection are much more common in COVID-19 patients than the subject of much early COVID fears—cytokine storms.
“Most methods that approach data analysis in the ICU look at data from patients when they’re admitted, then outcomes at some distant time point,” said Benjamin D. Singer, a study coauthor and associate professor at Northwestern’s Feinberg School of Medicine. “Everything in the middle is a black box.”
The hope is that AI can make new clinical findings from daily ICU patient status data beyond the COVID-19 case study.
The day-wise approach to the data led researchers to two related findings: Secondary respiratory infections are a common threat to ICU patients, including those with COVID-19; and a strong association between COVID-19 and respiratory failure, which can be interpreted as an unexpected lack of evidence for cytokine storms in COVID-19 patients. An eventual shift to multiple-organ failure might be expected if patients had an inflammatory cytokine response, which the researchers did not find. Reported rates vary, but cytokine storms have since the earliest days of the pandemic been considered a dangerous possibility in severe COVID-19 cases.
Some 35 percent of patients were diagnosed with a secondary infection, also known as ventilator-associated pneumonia (VAP), at some point during their ICU stays. More than 57 percent of COVID-19 patients developed VAP, compared to 25 percent of non-COVID patients. Multiple VAP episodes were reported for almost 20 percent of COVID-19 patients.
Catherine Gao, an instructor of medicine at Northwestern University and one of the study’s coauthors said the machine-learning algorithms they used helped the researchers “see clear patterns emerge that made clinical sense.” The team dubbed their day-focused machine learning approach CarpeDiem, after the Latin phrase meaning “seize the day.”
CarpeDiem was built using the Jupyter Notebook platform, and the team has made both the code and deidentified data available. The data set included 44 different clinical parameters for each patient day, and the clustering approach returned 14 groups with different signatures of six types of organ dysfunction: respiratory, ventilator instability, inflammatory, renal, neurologic, and shock.
“The field has focused on the idea that we can look at early data and see if that predicts how [patients] are going to do days, weeks, or months later,” said Singer. The hope, he said, is that research using daily ICU patient status rather than just a few time points can tell investigators—and the AI and machine-learning algorithms they use—more about the efficacy of different treatments or responses to changes in a patient’s condition. One future research direction would be to examine the momentum of illness, Singer said.
The technique the researchers developed (which they called the “patient-day approach”) might catch other changes in clinical states with less time between data points, said Sayon Dutta, an emergency physician at Massachusetts General Hospital who helps develop predictive models for clinical practice using machine learning and was not involved in the study. Hourly data could present its own problems to a clustering approach, he said, making patterns difficult to recognize. “I think splitting the day up into 8-hour chunks instead might be a good compromise of granularity and dimensionality,” he said.
Calls to incorporate new techniques to analyze the large amounts of ICU health data predate the COVID-19 pandemic. Machine learning or computational approaches more broadly could be used in the ICU in a variety of ways, not just in observational studies. Possible applications could use daily health records, as well as real-time data recorded by health care devices, or involve designing responsive machines that incorporate a range of available information.
The overall mortality rates were around 40 percent in both patients who developed a secondary infection and those who did not. But among study patients with one diagnosed case of VAP, if their secondary pneumonia was not successfully treated within 14 days, 76.5 percent eventually died or were sent to hospice care. The rate was 17.6 percent among those whose secondary pneumonia was considered cured. Both groups included roughly 50 patients.
Singer stresses that the risk of secondary pneumonia is typically a necessary one. “The ventilator is absolutely lifesaving in these instances. It’s up to us to figure out how to best manage complications that arise from it,” he said. “You have to be alive to experience a complication.”
For more than a century, utility companies have used electromechanical relays to protect power systems against damage that might occur during severe weather, accidents, and other abnormal conditions. But the relays could neither locate the faults nor accurately record what happened.
Then, in 1977, Edmund O. Schweitzer III invented the digital microprocessor-based relay as part of his doctoral thesis. Schweitzer’s relay, which could locate a fault within the radius of 1 kilometer, set new standards for utility reliability, safety, and efficiency.
Employer:
Schweitzer Engineering Laboratories
Title:
President and CTO
Member grade:
Life Fellow
Alma maters:
Purdue University, West Lafayette, Ind.; Washington State University, Pullman
To develop and manufacture his relay, he launched Schweitzer Engineering Laboratories in 1982 from his basement in Pullman, Wash. Today SEL manufactures hundreds of products that protect, monitor, control, and automate electric power systems in more than 165 countries.
Schweitzer, an IEEE Life Fellow, is his company’s president and chief technology officer. He started SEL with seven workers; it now has more than 6,000.
The 40-year-old employee-owned company continues to grow. It has four manufacturing facilities in the United States. Its newest one, which opened in March in Moscow, Idaho, fabricates printed circuit boards.
Schweitzer has received many accolades for his work, including the 2012 IEEE Medal in Power Engineering. In 2019 he was inducted into the U.S. National Inventors Hall of Fame.
Power system faults can happen when a tree or vehicle hits a power line, a grid operator makes a mistake, or equipment fails. The fault shunts extra current to some parts of the circuit, shorting it out.
If there is no proper scheme or device installed with the aim of protecting the equipment and ensuring continuity of the power supply, an outage or blackout could propagate throughout the grid.
Overcurrent is not the only damage that can occur, though. Faults also can change voltages, frequencies, and the direction of current.
A protection scheme should quickly isolate the fault from the rest of the grid, thus limiting damage on the spot and preventing the fault from spreading to the rest of the system. To do that, protection devices must be installed.
That’s where Schweitzer’s digital microprocessor-based relay comes in. He perfected it in 1982. It later was commercialized and sold as the SEL-21 digital distance relay/fault locator.
Schweitzer says his relay was, in part, inspired by an event that took place during his first year of college.
“Back in 1965, when I was a freshman at Purdue University, a major blackout left millions without power for hours in the U.S. Northeast and Ontario, Canada,” he recalls. “It was quite an event, and I remember it well. I learned many lessons from it. One was how difficult it was to restore power.”
He says he also was inspired by the book Protective Relays: Their Theory and Practice. He read it while an engineering graduate student at Washington State University, in Pullman.
“I bought the book on the Thursday before classes began and read it over the weekend,” he says. “I couldn’t put it down. I was hooked.
“I realized that these solid-state devices were special-purpose signal processors. They read the voltage and current from the power systems and decided whether the power systems’ apparatuses were operating correctly. I started thinking about how I could take what I knew about digital signal processing and put it to work inside a microprocessor to protect an electric power system.”
The 4-bit and 8-bit microprocessors were new at the time.
“I think this is how most inventions start: taking one technology and putting it together with another to make new things,” he says. “The inventors of the microprocessor had no idea about all the kinds of things people would use it for. It is amazing.”
He says he was introduced to signal processing, signal analysis, and how to use digital techniques in 1968 while at his first job, working for the U.S. Department of Defense at Fort Meade, in Maryland.
Faster ways to clear faults and improve cybersecurity
Schweitzer continues to invent ways of protecting and controlling electric power systems. In 2016 his company released the SEL-T400L, which samples a power system every microsecond to detect the time between traveling waves moving at the speed of light. The idea is to quickly detect and locate transmission line faults.
The relay decides whether to trip a circuit or take other actions in 1 to 2 milliseconds. Previously, it would take a protective relay on the order of 16 ms. A typical circuit breaker takes 30 to 40 ms in high-voltage AC circuits to trip.
“The inventors of the microprocessor had no idea about all the kinds of things people would use it for. It is amazing.”
“I like to talk about the need for speed,” Schweitzer says. “In this day and age, there’s no reason to wait to clear a fault. Faster tripping is a tremendous opportunity from a point of view of voltage and angle stability, safety, reducing fire risk, and damage to electrical equipment.
“We are also going to be able to get a lot more out of the existing infrastructure by tripping faster. For every millisecond in clearing time saved, the transmission system stability limits go up by 15 megawatts. That’s about one feeder per millisecond. So, if we save 12 ms, all of the sudden we are able to serve 12 more distribution feeders from one part of one transmission system.”
The time-domain technology also will find applications in transformer and distribution protection schemes, he says, as well as have a significant impact on DC transmission.
What excites Schweitzer today, he says, is the concept of energy packets, which he and SEL have been working on. The packets measure energy exchange for all signals including distorted AC systems or DC networks.
“Energy packets precisely measure energy transfer, independent of frequency or phase angle, and update at a fixed rate with a common time reference such as every millisecond,” he says. “Time-domain energy packets provide an opportunity to speed up control systems and accurately measure energy on distorted systems—which challenges traditional frequency-domain calculation methods.”
He also is focusing on improving the reliability of critical infrastructure networks by improving cybersecurity, situational awareness, and performance. Plug-and-play and best-effort networking aren’t safe enough for critical infrastructure, he says.
“SEL OT SDN technology solves some significant cybersecurity problems,” he says, “and frankly, it makes me feel comfortable for the first time with using Ethernet in a substation.”
Schweitzer didn’t start off planning to launch his own company. He began a successful career in academia in 1977 after joining the electrical engineering faculty at Ohio University, in Athens. Two years later, he moved to Pullman, Wash., where he taught at Washington State’s Voiland College of Engineering and Architecture for the next six years. It was only after sales of the SEL-21 took off that he decided to devote himself to his startup full time.
It’s little surprise that Schweitzer became an inventor and started his own company, as his father and grandfather were inventors and entrepreneurs.
His grandfather, Edmund O. Schweitzer, who held 87 patents, invented the first reliable high-voltage fuse in collaboration with Nicholas J. Conrad in 1911, the year the two founded Schweitzer and Conrad—today known as S&C Electric Co.—in Chicago.
Schweitzer’s father, Edmund O. Schweitzer Jr., had 208 patents. He invented several line-powered fault-indicating devices, and he founded the E.O. Schweitzer Manufacturing Co. in 1949. It is now part of SEL.
Schweitzer says a friend gave him the best financial advice he ever got about starting a business: Save your money.
“I am so proud that our 6,000-plus-person company is 100 percent employee-owned,” Schweitzer says. “We want to invest in the future, so we reinvest our savings into growth.”
He advises those who are planning to start a business to focus on their customers and create value for them.
“Unleash your creativity,” he says, “and get engaged with customers. Also, figure out how to contribute to society and make the world a better place.”
![]() |
Imagine a world in which you can do transactions and many other things without having to give your personal information. A world in which you don’t need to rely on banks or governments anymore. Sounds amazing, right? That’s exactly what blockchain technology allows us to do.
It’s like your computer’s hard drive. blockchain is a technology that lets you store data in digital blocks, which are connected together like links in a chain.
Blockchain technology was originally invented in 1991 by two mathematicians, Stuart Haber and W. Scot Stornetta. They first proposed the system to ensure that timestamps could not be tampered with.
A few years later, in 1998, software developer Nick Szabo proposed using a similar kind of technology to secure a digital payments system he called “Bit Gold.” However, this innovation was not adopted until Satoshi Nakamoto claimed to have invented the first Blockchain and Bitcoin.
A blockchain is a distributed database shared between the nodes of a computer network. It saves information in digital format. Many people first heard of blockchain technology when they started to look up information about bitcoin.
Blockchain is used in cryptocurrency systems to ensure secure, decentralized records of transactions.
Blockchain allowed people to guarantee the fidelity and security of a record of data without the need for a third party to ensure accuracy.
To understand how a blockchain works, Consider these basic steps:
Let’s get to know more about the blockchain.
Blockchain records digital information and distributes it across the network without changing it. The information is distributed among many users and stored in an immutable, permanent ledger that can't be changed or destroyed. That's why blockchain is also called "Distributed Ledger Technology" or DLT.
Here’s how it works:
And that’s the beauty of it! The process may seem complicated, but it’s done in minutes with modern technology. And because technology is advancing rapidly, I expect things to move even more quickly than ever.
Even though blockchain is integral to cryptocurrency, it has other applications. For example, blockchain can be used for storing reliable data about transactions. Many people confuse blockchain with cryptocurrencies like bitcoin and ethereum.
Blockchain already being adopted by some big-name companies, such as Walmart, AIG, Siemens, Pfizer, and Unilever. For example, IBM's Food Trust uses blockchain to track food's journey before reaching its final destination.
Although some of you may consider this practice excessive, food suppliers and manufacturers adhere to the policy of tracing their products because bacteria such as E. coli and Salmonella have been found in packaged foods. In addition, there have been isolated cases where dangerous allergens such as peanuts have accidentally been introduced into certain products.
Tracing and identifying the sources of an outbreak is a challenging task that can take months or years. Thanks to the Blockchain, however, companies now know exactly where their food has been—so they can trace its location and prevent future outbreaks.
Blockchain technology allows systems to react much faster in the event of a hazard. It also has many other uses in the modern world.
Blockchain technology is safe, even if it’s public. People can access the technology using an internet connection.
Have you ever been in a situation where you had all your data stored at one place and that one secure place got compromised? Wouldn't it be great if there was a way to prevent your data from leaking out even when the security of your storage systems is compromised?
Blockchain technology provides a way of avoiding this situation by using multiple computers at different locations to store information about transactions. If one computer experiences problems with a transaction, it will not affect the other nodes.
Instead, other nodes will use the correct information to cross-reference your incorrect node. This is called “Decentralization,” meaning all the information is stored in multiple places.
Blockchain guarantees your data's authenticity—not just its accuracy, but also its irreversibility. It can also be used to store data that are difficult to register, like legal contracts, state identifications, or a company's product inventory.
Blockchain has many advantages and disadvantages.
I’ll answer the most frequently asked questions about blockchain in this section.
Blockchain is not a cryptocurrency but a technology that makes cryptocurrencies possible. It's a digital ledger that records every transaction seamlessly.
Yes, blockchain can be theoretically hacked, but it is a complicated task to be achieved. A network of users constantly reviews it, which makes hacking the blockchain difficult.
Coinbase Global is currently the biggest blockchain company in the world. The company runs a commendable infrastructure, services, and technology for the digital currency economy.
Blockchain is a decentralized technology. It’s a chain of distributed ledgers connected with nodes. Each node can be any electronic device. Thus, one owns blockhain.
Bitcoin is a cryptocurrency, which is powered by Blockchain technology while Blockchain is a distributed ledger of cryptocurrency
Generally a database is a collection of data which can be stored and organized using a database management system. The people who have access to the database can view or edit the information stored there. The client-server network architecture is used to implement databases. whereas a blockchain is a growing list of records, called blocks, stored in a distributed system. Each block contains a cryptographic hash of the previous block, timestamp and transaction information. Modification of data is not allowed due to the design of the blockchain. The technology allows decentralized control and eliminates risks of data modification by other parties.
Blockchain has a wide spectrum of applications and, over the next 5-10 years, we will likely see it being integrated into all sorts of industries. From finance to healthcare, blockchain could revolutionize the way we store and share data. Although there is some hesitation to adopt blockchain systems right now, that won't be the case in 2022-2023 (and even less so in 2026). Once people become more comfortable with the technology and understand how it can work for them, owners, CEOs and entrepreneurs alike will be quick to leverage blockchain technology for their own gain. Hope you like this article if you have any question let me know in the comments section
FOLLOW US ON TWITTER
The end of Moore’s Law is looming. Engineers and designers can do only so much to miniaturize transistors and pack as many of them as possible into chips. So they’re turning to other approaches to chip design, incorporating technologies like AI into the process.
Samsung, for instance, is adding AI to its memory chips to enable processing in memory, thereby saving energy and speeding up machine learning. Speaking of speed, Google’s TPU V4 AI chip has doubled its processing power compared with that of its previous version.
But AI holds still more promise and potential for the semiconductor industry. To better understand how AI is set to revolutionize chip design, we spoke with Heather Gorr, senior product manager for MathWorks’ MATLAB platform.
How is AI currently being used to design the next generation of chips?
Heather Gorr: AI is such an important technology because it’s involved in most parts of the cycle, including the design and manufacturing process. There’s a lot of important applications here, even in the general process engineering where we want to optimize things. I think defect detection is a big one at all phases of the process, especially in manufacturing. But even thinking ahead in the design process, [AI now plays a significant role] when you’re designing the light and the sensors and all the different components. There’s a lot of anomaly detection and fault mitigation that you really want to consider.
Heather GorrMathWorks
Then, thinking about the logistical modeling that you see in any industry, there is always planned downtime that you want to mitigate; but you also end up having unplanned downtime. So, looking back at that historical data of when you’ve had those moments where maybe it took a bit longer than expected to manufacture something, you can take a look at all of that data and use AI to try to identify the proximate cause or to see something that might jump out even in the processing and design phases. We think of AI oftentimes as a predictive tool, or as a robot doing something, but a lot of times you get a lot of insight from the data through AI.
What are the benefits of using AI for chip design?
Gorr: Historically, we’ve seen a lot of physics-based modeling, which is a very intensive process. We want to do a reduced order model, where instead of solving such a computationally expensive and extensive model, we can do something a little cheaper. You could create a surrogate model, so to speak, of that physics-based model, use the data, and then do your parameter sweeps, your optimizations, your Monte Carlo simulations using the surrogate model. That takes a lot less time computationally than solving the physics-based equations directly. So, we’re seeing that benefit in many ways, including the efficiency and economy that are the results of iterating quickly on the experiments and the simulations that will really help in the design.
So it’s like having a digital twin in a sense?
Gorr: Exactly. That’s pretty much what people are doing, where you have the physical system model and the experimental data. Then, in conjunction, you have this other model that you could tweak and tune and try different parameters and experiments that let sweep through all of those different situations and come up with a better design in the end.
So, it’s going to be more efficient and, as you said, cheaper?
Gorr: Yeah, definitely. Especially in the experimentation and design phases, where you’re trying different things. That’s obviously going to yield dramatic cost savings if you’re actually manufacturing and producing [the chips]. You want to simulate, test, experiment as much as possible without making something using the actual process engineering.
We’ve talked about the benefits. How about the drawbacks?
Gorr: The [AI-based experimental models] tend to not be as accurate as physics-based models. Of course, that’s why you do many simulations and parameter sweeps. But that’s also the benefit of having that digital twin, where you can keep that in mind—it’s not going to be as accurate as that precise model that we’ve developed over the years.
Both chip design and manufacturing are system intensive; you have to consider every little part. And that can be really challenging. It’s a case where you might have models to predict something and different parts of it, but you still need to bring it all together.
One of the other things to think about too is that you need the data to build the models. You have to incorporate data from all sorts of different sensors and different sorts of teams, and so that heightens the challenge.
How can engineers use AI to better prepare and extract insights from hardware or sensor data?
Gorr: We always think about using AI to predict something or do some robot task, but you can use AI to come up with patterns and pick out things you might not have noticed before on your own. People will use AI when they have high-frequency data coming from many different sensors, and a lot of times it’s useful to explore the frequency domain and things like data synchronization or resampling. Those can be really challenging if you’re not sure where to start.
One of the things I would say is, use the tools that are available. There’s a vast community of people working on these things, and you can find lots of examples [of applications and techniques] on GitHub or MATLAB Central, where people have shared nice examples, even little apps they’ve created. I think many of us are buried in data and just not sure what to do with it, so definitely take advantage of what’s already out there in the community. You can explore and see what makes sense to you, and bring in that balance of domain knowledge and the insight you get from the tools and AI.
What should engineers and designers consider when using AI for chip design?
Gorr: Think through what problems you’re trying to solve or what insights you might hope to find, and try to be clear about that. Consider all of the different components, and document and test each of those different parts. Consider all of the people involved, and explain and hand off in a way that is sensible for the whole team.
How do you think AI will affect chip designers’ jobs?
Gorr: It’s going to free up a lot of human capital for more advanced tasks. We can use AI to reduce waste, to optimize the materials, to optimize the design, but then you still have that human involved whenever it comes to decision-making. I think it’s a great example of people and technology working hand in hand. It’s also an industry where all people involved—even on the manufacturing floor—need to have some level of understanding of what’s happening, so this is a great industry for advancing AI because of how we test things and how we think about them before we put them on the chip.
How do you envision the future of AI and chip design?
Gorr: It’s very much dependent on that human element—involving people in the process and having that interpretable model. We can do many things with the mathematical minutiae of modeling, but it comes down to how people are using it, how everybody in the process is understanding and applying it. Communication and involvement of people of all skill levels in the process are going to be really important. We’re going to see less of those superprecise predictions and more transparency of information, sharing, and that digital twin—not only using AI but also using our human knowledge and all of the work that many people have done over the years.
This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.
Does your robot know where it is right now? Does it? Are you sure? And what about all of its robot friends—do they know where they are too? This is important. So important, in fact, that some would say that multirobot simultaneous localization and mapping (SLAM) is a crucial capability to obtain timely situational awareness over large areas. Those some would be a group of MIT roboticists who just won the IEEE Transactions on Robotics Best Paper Award for 2022, presented at this year’s IEEE International Conference on Robotics and Automation (ICRA 2023), in London. Congratulations!
Out of more than 200 papers published in Transactions on Robotics last year, reviewers and editors voted to present the 2022 IEEE Transactions on Robotics King-Sun Fu Memorial Best Paper Award to Yulun Tian, Yun Chang, Fernando Herrera Arias, Carlos Nieto-Granda, Jonathan P. How, and Luca Carlone from MIT for their paper Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems.
“The editorial board, and the reviewers, were deeply impressed by the theoretical elegance and practical relevance of this paper and the open-source code that accompanies it. Kimera-Multi is now the gold standard for distributed multirobot SLAM.”
—Kevin Lynch, editor in chief, IEEE Transactions on Robotics
Robots rely on simultaneous localization and mapping to understand where they are in unknown environments. But unknown environments are a big place, and it takes more than one robot to explore all of them. If you send a whole team of robots, each of them can explore their own little bit, and then share what they’ve learned with one another to make a much bigger map that they can all take advantage of. Like most things robot, this is much easier said than done, which is why Kimera-Multi is so useful and important. The award-winning researchers say that Kimera-Multi is a distributed system that runs locally on a bunch of robots all at once. If one robot finds itself in communications range with another robot, they can share map data, and use those data to build and improve a globally consistent map that includes semantic annotations.
Since filming the above video, the researchers have done real-world tests with Kimera-Multi. Below is an example of the map generated by three robots as they travel a total of more than 2 kilometers. You can easily see how the accuracy of the map improves significantly as the robots talk to each other:
More details and code are available on GitHub.
Transactions on Robotics also selected some excellent Honorable Mentions for 2022:
Stabilization of Complementarity Systems via Contact-Aware Controllers, by Alp Aydinoglu, Philip Sieg, Victor M. Preciado, and Michael Posa
Autonomous Cave Surveying With an Aerial Robot, by Wennie Tabib, Kshitij Goel, John Yao, Curtis Boirum, and Nathan Michael
Prehensile Manipulation Planning: Modeling, Algorithms and Implementation, by Florent Lamiraux and Joseph Mirabel
Rock-and-Walk Manipulation: Object Locomotion by Passive Rolling Dynamics and Periodic Active Control, by Abdullah Nazir, Pu Xu, and Jungwon Seo
Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications, by Tao Jin, Long Li, Tianhong Wang, Guopeng Wang, Jianguo Cai, Yingzhong Tian, and Quan Zhang
Tens of thousands of tech workers have been laid off by companies recently, including at Amazon, Dropbox, GitHub, Google, Microsoft, and Vimeo. Startups, too, have made cuts, according to TechCrunch.
To help IEEE members cope with losing a job, The Institute asked Chenyang Xu for advice. The IEEE Fellow is president and cochairman of Perception Vision Medical Technologies, known as PVmed. The global startup, which is involved with AI-powered precision radiotherapy and surgery for treating cancer, is headquartered in Guangzhou, China. Xu was formerly general manager of the Siemens Technology to Business North America.
In past articles, Xu has provided guidance for startups, such as steps they can take to ensure success, where founders can find financing, and how to be a global entrepreneur.
Included with his advice are ways IEEE can help.
Although Xu isn’t a financial advisor, he says the first thing to do when you lose your job is to “slim down financially.” Do what it takes to make sure you have enough money to support yourself and your family until you land your next job, he says.
“Don’t assume you’ll find a job right away,” he cautions. “You might not find one for six months, and by then you could become bankrupt.”
To help unemployed members keep costs down, IEEE offers a reduced-dues program. For those who have lost their insurance coverage, the organization offers group insurance plans.
After attending to your finances, Xu says, the next step is to reflect on your career.
“Being laid off gives you some breathing room,” he says. “When you were working, you had no choice in what kind of work you had to do. But now that you’re laid off, you need to think about your career in 5 to 10 years. You now have experience and know what you like to do and what you don’t.”
Ask yourself what makes you fulfilled, he says, as well as what makes you happy and what makes you feel valued. Then, he says, start looking for jobs that check all or some of the boxes.
“Now that you’re laid off, you need to think about your career in 5 to 10 years. You now have experience and know what you like to do and what you don’t.”
Once you’ve figured out what your long-range career plan is, you most likely will need to learn new skills, Xu says. If you’ve decided to change fields, you’ll need to learn even more.
IEEE offers online courses that cover 16 subjects. There are classes, for example, on aerospace, computing, power and energy, and transportation. The emerging technologies course offerings cover artificial reality, blockchain technology, virtual reality, and more.
Several leadership courses can teach you how to manage people. They include An Introduction to Leadership, Communication and Presentation Skills, and Technical Writing for Scientists and Engineers.
Looking for a new position? The IEEE Job Site lists hundreds of openings. Job seekers can upload their résumé and set up an alert to be notified of jobs matching their criteria. The site’s career-planning portal offers services such as interview tips and help with writing résumés and cover letters.
IEEE-USA offers several on-demand job-search webinars. They cover topics such as how to find the right job, résumé trends, and healthy financial habits. You don’t have to live in the United States to access them.
To earn some extra money, consider becoming a consultant, Xu says.
“Consulting can be an excellent bridge to bring in income while working to secure the next job when facing the situation that your job search may take months or longer,” he says. “For some, consulting can be the next job.”
IEEE-USA’s consultants web page offers a number of services. For example, members can find an assignment by registering their name in the IEEE-USA Consultant Finder. Those who want to network with other consultants can use the site to search for them by state or by IEEE’s U.S. geographic regions. The website also offers resources to help consultants succeed, such as e-books, newsletters, and webinars.
To determine how much to charge a client, the IEEE-USA Salary Service provides information from IEEE’s U.S. members about their compensation and other details.
IEEE Collabratec’s Consultants Exchange offers networking workshops, educational webinars, and more.
If you are financially able and have the right ideas and expertise, Xu says, another option might be to launch your own company.
The IEEE Entrepreneurship program offers a variety of resources for founders. Its IEEE Entrepreneurship Exchange is a community of tech startups, investors, and venture capital organizations that discuss and develop entrepreneurial ideas and endeavors. There’s also a mentorship program, in which founders can get advice from an experienced entrepreneur.
Don’t overlook the power of networking in finding a job, Xu advises.
“You need to reach out to as many people as possible,” he says.
You’re likely to meet people who could help you at your IEEE chapter or section meetings and at IEEE conferences, Xu says.
“You will be surprised about how many contacts you can meet who might help you find a job, mentor you, or give you information about a company that might be hiring,” he says.
Take advantage of LinkedIn and other professional social media outlets, Xu suggests. He adds that you should let your followers know you are looking for a position.
If you are knowledgeable about a specific topic, he encourages posting your thoughts about it to display your expertise to prospective employers.
Consider joining the IEEE Collabratec networking platform. Members have access to IEEE’s membership directory, where they can find contacts who might help them find a job. They also can join communities of members who are working in their technical areas, such as artificial intelligence, consumer technology, and the Internet of Things.
If you are still having a hard time finding a job, consider moving to a different region of your country—or to another country—where jobs are more plentiful, Xu says.
“Relocating,” he says, “may open up whole new opportunities or adventures that are fulfilling to you or your family.”
Inside today’s computers, phones, and other mobile devices, more and more sensors, processors, and other electronics are fighting for space. Taking up a big part of this valuable real estate are the cameras—just about every gadget needs a camera, or two, three, or more. And the most space-consuming part of the camera is the lens.
The lenses in our mobile devices typically collect and direct incoming light by refraction, using a curve in a transparent material, usually plastic, to bend the rays. So these lenses can’t shrink much more than they already have: To make a camera small, the lens must have a short focal length; but the shorter the focal length, the greater the curvature and therefore the thickness at the center. These highly curved lenses also suffer from all sorts of aberrations, so camera-module manufacturers use multiple lenses to compensate, adding to the camera’s bulk.
With today’s lenses, the size of the camera and image quality are pulling in different directions. The only way to make lenses smaller and better is to replace refractive lenses with a different technology.
That technology exists. It’s the metalens, a device developed at Harvard and commercialized at Metalenz, where I am an applications engineer. We create these devices using traditional semiconductor-processing techniques to build nanostructures onto a flat surface. These nanostructures use a phenomenon called metasurface optics to direct and focus light. These lenses can be extremely thin—a few hundred micrometers thick, about twice the thickness of a human hair. And we can combine the functionality of multiple curved lenses into just one of our devices, further addressing the space crunch and opening up the possibility of new uses for cameras in mobile devices.
Before I tell you how the metalens evolved and how it works, consider a few previous efforts to replace the traditional curved lens.
Conceptually, any device that manipulates light does so by altering its three fundamental properties: phase, polarization, and intensity. The idea that any wave or wave field can be deconstructed down to these properties was proposed by Christiaan Huygens in 1678 and is a guiding principle in all of optics.
In this single metalens [between tweezers], the pillars are less than 500 nanometers in diameter. The black box at the bottom left of the enlargement represents 2.5 micrometers. Metalenz
In the early 18th century, the world’s most powerful economies placed great importance on the construction of lighthouses with larger and more powerful projection lenses to help protect their shipping interests. However, as these projection lenses grew larger, so did their weight. As a result, the physical size of a lens that could be raised to the top of a lighthouse and structurally supported placed limitations on the power of the beam that could be produced by the lighthouse.
French physicist Augustin-Jean Fresnel realized that if he cut a lens into facets, much of the central thickness of the lens could be removed but still retain the same optical power. The Fresnel lens represented a major improvement in optical technology and is now used in a host of applications, including automotive headlights and brake lights, overhead projectors, and—still—for lighthouse projection lenses. However, the Fresnel lens has limitations. For one, the flat edges of facets become sources of stray light. For another, faceted surfaces are more difficult to manufacture and polish precisely than continuously curved ones are. It’s a no-go for camera lenses, due to the surface accuracy requirements needed to produce good images.
Another approach, now widely used in 3D sensing and machine vision, traces its roots to one of the most famous experiments in modern physics: Thomas Young’s 1802 demonstration of diffraction. This experiment showed that light behaves like a wave, and when the waves meet, they can amplify or cancel one another depending on how far the waves have traveled. The so-called diffractive optical element (DOE) based on this phenomenon uses the wavelike properties of light to create an interference pattern—that is, alternating regions of dark and light, in the form of an array of dots, a grid, or any number of shapes. Today, many mobile devices use DOEs to convert a laser beam into “structured light.” This light pattern is projected, captured by an image sensor, then used by algorithms to create a 3D map of the scene. These tiny DOEs fit nicely into small gadgets, yet they can’t be used to create detailed images. So, again, applications are limited.
Enter the metalens. Developed at Harvard by a team led by professor Federico Capasso, then-graduate student Rob Devlin, research associates Reza Khorasaninejad, Wei Ting Chen, and others, metalenses work in a way that’s fundamentally different from any of these other approaches.
A metalens is a flat glass surface with a semiconductor layer on top. Etched in the semiconductor is an array of pillars several hundred nanometers high. These nanopillars can manipulate light waves with a degree of control not possible with traditional refractive lenses.
Imagine a shallow marsh filled with seagrass standing in water. An incoming wave causes the seagrass to sway back and forth, sending pollen flying off into the air. If you think of that incoming wave as light energy, and the nanopillars as the stalks of seagrass, you can picture how the properties of a nanopillar, including its height, thickness, and position next to other nanopillars, might change the distribution of light emerging from the lens.
A 12-inch wafer can hold up to 10,000 metalenses, made using a single semiconductor layer.Metalenz
We can use the ability of a metalens to redirect and change light in a number of ways. We can scatter and project light as a field of infrared dots. Invisible to the eye, these dots are used in many smart devices to measure distance, mapping a room or a face. We can sort light by its polarization (more on that in a moment). But probably the best way to explain how we are using these metasurfaces as a lens is by looking at the most familiar lens application—capturing an image.
The process starts by illuminating a scene with a monochromatic light source—a laser. (While using a metalens to capture a full-color image is conceptually possible, that is still a lab experiment and far from commercialization.) The objects in the scene bounce the light all over the place. Some of this light comes back toward the metalens, which is pointed, pillars out, toward the scene. These returning photons hit the tops of the pillars and transfer their energy into vibrations. The vibrations—called plasmons—travel down the pillars. When that energy reaches the bottom of a pillar, it exits as photons, which can be then captured by an image sensor. Those photons don’t need to have the same properties as those that entered the pillars; we can change these properties by the way we design and distribute the pillars.
Researchers around the world have been exploring the concept of metalenses for decades.
In a paper published in 1968 in Soviet Physics Uspekhi, Russian physicist Victor Veselago put the idea of metamaterials on the map, hypothesizing that nothing precluded the existence of a material that exhibits a negative index of refraction. Such a material would interact with light very differently than a normal material would. Where light ordinarily bounces off a material in the form of reflection, it would pass around this type of metamaterial like water going around a boulder in a stream.
It took until 2000 before the theory of metamaterials was implemented in the lab. That year, Richard A. Shelby and colleagues at the University of California, San Diego, demonstrated a negative refractive index metamaterial in the microwave region. They published the discovery in 2001 in Science, causing a stir as people imagined invisibility cloaks. (While intriguing to ponder, creating such a device would require precisely manufacturing and assembling thousands of metasurfaces.)
The first metalens to create high-quality images with visible light came out of Federico Capasso’s lab at Harvard. Demonstrated in 2016, with a description of the research published in Science, the technology immediately drew interest from smartphone manufacturers. Harvard then licensed the foundational intellectual property exclusively to Metalenz, where it has now been commercialized.
A single metalens [right] can replace a stack of traditional lenses [left], simplifying manufacturing and dramatically reducing the size of a lens package.Metalenz
Since then, researchers at Columbia University, Caltech, and the University of Washington, working with Tsinghua University, in Beijing, have also demonstrated the technology.
Much of the development work Metalenz does involves fine-tuning the way the devices are designed. In order to translate image features like resolution into nanoscale patterns, we developed tools to help calculate the way light waves interact with materials. We then convert those calculations into design files that can be used with standard semiconductor processing equipment.
The first wave of optical metasurfaces to make their way into mobile imaging systems have on the order of 10 million silicon pillars on a single flat surface only a few millimeters square, with each pillar precisely tuned to accept the correct phase of light, a painstaking process even with the help of advanced software. Future generations of the metalens won’t necessarily have more pillars, but they’ll likely have more sophisticated geometries, like sloped edges or asymmetric shapes.
Metalenz came out of stealth mode in 2021, announcing that it was getting ready to scale up production of devices. Manufacturing was not as big a challenge as design because the company manufactures metasurfaces using the same materials, lithography, and etching processes that it uses to make integrated circuits.
In fact, metalenses are less demanding to manufacture than even a very simple microchip because they require only a single lithography mask as opposed to the dozens required by a microprocessor. That makes them less prone to defects and less expensive. Moreover, the size of the features on an optical metasurface are measured in hundreds of nanometers, whereas foundries are accustomed to making chips with features that are smaller than 10 nanometers.
And, unlike plastic lenses, metalenses can be made in the same foundries that produce the other chips destined for smartphones. This means they could be directly integrated with the CMOS camera chips on site rather than having to be shipped to another location, which reduces their costs still further.
A single meta-optic, in combination with an array of laser emitters, can be used to create the type of high-contrast, near-infrared dot or line pattern used in 3D sensing. Metalenz
In 2022, ST Microelectronics announced the integration of Metalenz’s metasurface technology into its FlightSense modules. Previous generations of FlightSense have been used in more than 150 models of smartphones, drones, robots, and vehicles to detect distance. Such products with Metalenz technology inside are already in consumer hands, though ST Microelectronics isn’t releasing specifics.
Indeed, distance sensing is a sweet spot for the current generation of metalens technology, which operates at near-infrared wavelengths. For this application, many consumer electronics companies use a time-of-flight system, which has two optical components: one that transmits light and one that receives it. The transmitting optics are more complicated. These involve multiple lenses that collect light from a laser and transform it to parallel light waves—or, as optical engineers call it, a collimated beam. These also require a diffraction grating that turns the collimated beam into a field of dots. A single metalens can replace all of those transmitting and receiving optics, saving real estate within the device as well as reducing cost.
And a metalens does the field-of-dots job better in difficult lighting conditions because it can illuminate a broader area using less power than a traditional lens, directing more of the light to where you want it.
Conventional imaging systems, at best, gather information only about the spatial position of objects and their color and brightness.But the light carries another type of information: the orientation of the light waves as they travel through space—that is, the polarization. Future metalens applications will take advantage of the technology’s ability to detect polarized light.
The polarization of light reflecting off an object conveys all sorts of information about that object, including surface texture, type of surface material, and how deeply light penetrates the material before bouncing back to the sensor. Prior to the development of the metalens, a machine vision system would require complex optomechanical subsystems to gather polarization information. These typically rotate a polarizer—structured like a fence to allow only waves oriented at a certain angle to pass through—in front of a sensor. They then monitor how the angle of rotation impacts the amount of light hitting the sensor.
Metasurface optics are capable of capturing polarization information from light, revealing a material’s characteristics and providing depth information.Metalenz
A metalens, by contrast, doesn’t need a fence; all the incoming light comes through. Then it can be redirected to specific regions of the image sensor based on its polarization state, using a single optical element. If, for example, light is polarized along the X axis, the nanostructures of the metasurface will direct the light to one section of the image sensor. However, if it is polarized at 45 degrees to the X axis, the light will be directed to a different section. Then software can reconstruct the image with information about all its polarization states.
Using this technology, we can replace previously large and expensive laboratory equipment with tiny polarization-analysis devices incorporated into smartphones, cars, and even augmented-reality glasses. A smartphone-based polarimeter could let you determine whether a stone in a ring is diamond or glass, whether concrete is cured or needs more time, or whether an expensive hockey stick is worth buying or contains micro cracks. Miniaturized polarimeters could be used to determine whether a bridge’s support beam is at risk of failure, whether a patch on the road is black ice or just wet, or if a patch of green is really a bush or a painted surface being used to hide a tank. These devices could also help enable spoof-proof facial identification, since light reflects off a 2D photo of a person at different angles than a 3D face and from a silicone mask differently than it does from skin. Handheld polarizers could improve remote medical diagnostics—for example, polarization is used in oncology to examine tissue changes.
But like the smartphone itself, it’s hard to predict where metalenses will take us. When Apple introduced the iPhone in 2008, no one could have predicted that it would spawn companies like Uber. In the same way, perhaps the most exciting applications of metalenses are ones we can’t even imagine yet.
For about as long as engineers have talked about beaming solar power to Earth from space, they’ve had to caution that it was an idea unlikely to become real anytime soon. Elaborate designs for orbiting solar farms have circulated for decades—but since photovoltaic cells were inefficient, any arrays would need to be the size of cities. The plans got no closer to space than the upper shelves of libraries.
That’s beginning to change. Right now, in a sun-synchronous orbit about 525 kilometers overhead, there is a small experimental satellite called the Space Solar Power Demonstrator One (SSPD-1 for short). It was designed and built by a team at the California Institute of Technology, funded by donations from the California real estate developer Donald Bren, and launched on 3 January—among 113 other small payloads—on a SpaceX Falcon 9 rocket.
“To the best of our knowledge, this would be the first demonstration of actual power transfer in space, of wireless power transfer,” says Ali Hajimiri, a professor of electrical engineering at Caltech and a codirector of the program behind SSPD-1, the Space Solar Power Project.
The Caltech team is waiting for a go-ahead from the operators of a small space tug to which it is attached, providing guidance and attitude control. If all goes well, SSPD-1 will spend at least five to six months testing prototype components of possible future solar stations in space. In the next few weeks, the project managers hope to unfold a lightweight frame, called DOLCE (short for Deployable on-Orbit ultraLight Composite Experiment), on which parts of future solar arrays could be mounted. Another small assembly on the spacecraft contains samples of 32 different types of photovoltaic cells, intended to see which would be most efficient and robust. A third part of the vehicle contains a microwave transmitter, set up to prove that energy from the solar cells can be sent to a receiver. For this first experiment, the receivers are right there on board the spacecraft, but if it works, an obvious future step would be to send electricity via microwave to receivers on the ground.
Caltech’s Space Solar Power Demonstrator, shown orbiting Earth in this artist’s conception, was launched on 3 January.Caltech
One can dismiss the 50-kilogram SSPD-1 as yet another nonstarter, but a growing army of engineers and policymakers take solar energy from space seriously. Airbus, the European aerospace company, has been testing its own technology on the ground, and government agencies in China, Japan, South Korea, and the United States have all mounted small projects. “Recent technology and conceptual advances have made the concept both viable and economically competitive,” said Frazer-Nash, a British engineering consultancy, in a 2021 report to the U.K. government. Engineers working on the technology say microwave power transmissions would be safe, unlike ionizing radiation, which is harmful to people or other things in its path.
No single thing has happened to start this renaissance. Instead, say engineers, several advances are coming together.
For one thing, the cost of launching hardware into orbit keeps dropping, led by SpaceX and other, smaller companies such as Rocket Lab. SpaceX has a simplified calculator on its website, showing that if you want to launch a 50-kg satellite into sun-synchronous orbit, they’ll do it for US $275,000.
Meanwhile, photovoltaic technology has improved, step by step. Lightweight electronic components keep getting better and cheaper. And there is political pressure as well: Governments and major companies have made commitments to decarbonize in the battle against global climate change, committing to renewable energy sources to replace fossil fuels.
Most solar power, at least for the foreseeable future, will be Earth-based, which will be cheaper and easier to maintain than anything anyone can launch into space. Proponents of space-based solar power say that for now, they see it as best used for specialty needs, such as remote outposts, places recovering from disasters, or even other space vehicles.
But Hajimiri says don’t underestimate the advantages of space, such as unfiltered sunlight that is far stronger than what reaches the ground and is uninterrupted by darkness or bad weather—if you can build an orbiting array light enough to be practical.
Most past designs, dictated by the technology of their times, included impossibly large truss structures to hold solar panels and wiring to route power to a central transmitter. The Caltech team would dispense with all that. An array would consist of thousands of independent tiles as small as 100 square centimeters, each with its own solar cells, transmitter, and avionics. They might be loosely connected, or they might even fly in formation.
Time-lapse images show the experimental DOLCE frame for an orbiting solar array being unfolded in a clean room.Caltech
“The analogy I like to use is that it’s like an army of ants instead of an elephant,” says Hajimiri. Transmission to receivers on the ground could be by phased array—microwave signals from the tiles synchronized so that they can be aimed with no moving parts. And the parts—the photovoltaic cells with their electronics—could perhaps be so lightweight that they’re flexible. New algorithms could keep their signals focused.
“That’s the kind of thing we’re talking about,” said Harry Atwater, a coleader of the Caltech project, as SSPD-1 was being planned. “Really gossamer-like, ultralight, the limits of mass-density deployable systems.”
If it works out, in 30 years maybe there could be orbiting solar power fleets, adding to the world’s energy mix. In other words, as a recent report from Frazer-Nash concluded, this is “a potential game changer.”
This article appears in the April 2023 print issue as “Trial Run for Orbiting Solar Array.”
The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.
Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.
Both systems offer the prospect of being inexpensive to use. The electric bill itself would range “from US $5 to $10,” for a pulse lasting a few seconds, says Michael Perry, the vice president in charge of laser systems for General Atomics.
Why are we getting ray guns only now, more than a century after H.G. Wells imagined them in his sci-fi novel The War of the Worlds? Put it down partly to the rising demand for cheap antimissile defense, but it’s mainly the result of technical advances in high-energy lasers.
The old standby for powerful lasers employed chemical reactions in flowing gas. That method was clumsy, heavy, and dangerous, and the laser itself became a flammable target for enemies to attack. The advantage was that these chemical lasers could be made immensely powerful, a far cry from the puny pulsed ruby lasers that wowed observers back in the 1960s by punching holes in razor blades (at power levels jocularly measured in “gillettes”).
“With lasers, if you can see it, you can kill it.” —Robert Afzal, Lockheed Martin
By 2014, fiber lasers had reached the point where they could be considered for weapons, and one 30-kW model was installed on the USS Ponce, where it demonstrated the ability to shoot down speedboats and small drones at relatively close range. The 300-kW fiber lasers being employed now in the two Army projects emit about 100 kW in optical power, enough to burn through much heftier targets (not to mention quite a few gillettes) at considerable distances.
“A laser of that class can be effective against a wide variety of targets, including cruise missiles, mortars, UAVs, and aircraft,” says Perry. “But not reentry vehicles [launched by ballistic missiles].” Those are the warheads, and to ward them off, he says, you’d probably have to hit the rocket when it’s still in the boost phase, which would mean placing your laser in orbit. Laser tech is still far from performing such a feat.
Even so, these futuristic weapons will no doubt find plenty of applications in today’s world. Israel made news in April by field-testing an airborne antimissile laser called Iron Beam, a play on the name Iron Dome, the missile system it has used to down rockets fired from Gaza. The laser system, reportedly rated at about 100 kW, is still not in service and hasn’t seen combat, but one day it may be able to replace some, if not all, of Iron Dome’s missiles with photons. Other countries have similar capabilities, or say they do. In May, Russia said it had used a laser to incinerate a Ukrainian drone from 5 kilometers away, a claim that Ukraine’s president, Volodymyr Zelenskyy, derided.
A missile is destroyed by a low-power, 2013 version of Lockheed Martin’s fiber laser www.youtube.com
Not all ray guns must be lasers, though. In March, Taiwan News reported that Chinese researchers had built a microwave weapon that in principle could be placed in orbit from where its 5-megawatt pulses could fry the electronic heart of an enemy satellite. But making such a machine in the lab is quite different from operating it in the field, not to mention in outer space, where supplying power and removing waste heat constitute major problems.
Because lasers performance falls off in bad weather, they can’t be relied on by themselves to defend critically important targets. They must instead be paired with kinetic weapons—missiles or bullets—to create a layered defense system.
“With lasers, if you can see it, you can kill it; typically rain and snow are not big deterrents,” says Robert Afzal, an expert on lasers at Lockheed Martin. “But a thundercloud—that’s hard.”
Afzal says that the higher up a laser is placed, the less interference it will face, but there is a trade-off. “With an airplane you have the least amount of resources—least volume, least weight—that is available to you. On a ship, you have a lot more resources available, but you’re in the maritime atmosphere, which is pretty hazy, so you may need a lot more power to get to the target. And the Army is in between: It deals with closer threats, like rockets and mortars, and they need a deep magazine, because they deal with a lot more targets.”
In every case, the point is to use expensive antimissile missiles only when you must. Israel opted to pursue laser weapons in part because its Iron Dome missiles cost so much more than the unguided, largely homemade rockets they defend against. Some of the military drones that Russia and Ukraine are now flying wouldn’t break the budget of the better-heeled sort of hobbyist. And it would be a Pyrrhic victory indeed to shoot them from the sky with projectiles so costly that you went broke.
This article appears in the January 2023 print issue as “Economics Drives a Ray-Gun Resurgence .”
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
Are you a great Chrome user? That’s nice to hear. But first, consider whether or not there are any essential Chrome extensions you are currently missing from your browsing life, so here we're going to share with you 10 Best Chrome Extensions That Are Perfect for Everyone. So Let's Start.
When you have too several passwords to remember, LastPass remembers them for you.
This chrome extension is an easy way to save you time and increase security. It’s a single password manager that will log you into all of your accounts. you simply ought to bear in mind one word: your LastPass password to log in to all or any your accounts.
Features
MozBar is an SEO toolbar extension that makes it easy for you to analyze your web pages' SEO while you surf. You can customize your search so that you see data for a particular region or for all regions. You get data such as website and domain authority and link profile. The status column tells you whether there are any no-followed links to the page.You can also compare link metrics. There is a pro version of MozBar, too.
Grammarly is a real-time grammar checking and spelling tool for online writing. It checks spelling, grammar, and punctuation as you type, and has a dictionary feature that suggests related words. if you use mobile phones for writing than Grammerly also have a mobile keyboard app.
VidIQ is a SaaS product and Chrome Extension that makes it easier to manage and optimize your YouTube channels. It keeps you informed about your channel's performance with real-time analytics and powerful insights.
Features
ColorZilla is a browser extension that allows you to find out the exact color of any object in your web browser. This is especially useful when you want to match elements on your page to the color of an image.
Features
Honey is a chrome extension with which you save each product from the website and notify it when it is available at low price it's one among the highest extensions for Chrome that finds coupon codes whenever you look online.
Features
GMass (or Gmail Mass) permits users to compose and send mass emails using Gmail. it is a great tool as a result of you'll use it as a replacement for a third-party email sending platform. you will love GMass to spice up your emailing functionality on the platform.
It's a Chrome extension for geeks that enables you to highlight and save what you see on the web.
It's been designed by Notion, that could be a Google space different that helps groups craft higher ideas and collaborate effectively.
Features
If you are someone who works online, you need to surf the internet to get your business done. And often there is no time to read or analyze something. But it's important that you do it. Notion Web Clipper will help you with that.
WhatFont is a Chrome extension that allows web designers to easily identify and compare different fonts on a page. The first time you use it on any page, WhatFont will copy the selected page.It Uses this page to find out what fonts are present and generate an image that shows all those fonts in different sizes. Besides the apparent websites like Google or Amazon, you'll conjointly use it on sites wherever embedded fonts ar used.
Similar Web is an SEO add on for both Chrome and Firefox.It allows you to check web site traffic and key metrics for any web site, as well as engagement rate, traffic ranking, keyword ranking, and traffic source. this is often a good tool if you are looking to seek out new and effective SEO ways similarly as analyze trends across the web.
Features
I know everyone knows how to install extension in pc but most of people don't know how to install it in android phone so i will show you how to install it in android
1. Download Kiwi browser from Play Store and then Open it.
2. Tap the three dots at the top right corner and select Extension.
3. Click on (+From Store) to access chrome web store or simple search chrome web store and access it.
4. Once you found an extension click on add to chrome a message will pop-up asking if you wish to confirm your choice. Hit OK to install the extension in the Kiwi browser.
5. To manage extensions on the browser, tap the three dots in the upper right corner. Then select Extensions to access a catalog of installed extensions that you can disable, update or remove with just a few clicks.
Your Chrome extensions should install on Android, but there’s no guarantee all of them will work. Because Google Chrome Extensions are not optimized for Android devices.
We hope this list of 10 best chrome extensions that is perfect for everyone will help you in picking the right Chrome Extensions. We have selected the extensions after matching their features to the needs of different categories of people. Also which extension you like the most let me know in the comment section
If electric vertical takeoff and landing aircraft do manage to revolutionize transportation, the date of 5 October 2011, may live on in aviation lore. That was the day when a retired mechanical engineer named Marcus Leng flew a home-built eVTOL across his front yard in Warkworth, Ont., Canada, startling his wife and several of his friends.
“So, take off, flew about 6 feet above the ground, pitched the aircraft towards my wife and the two couples that were there, who were behind automobiles for protection, and decided to do a skidding stop in front of them. Nobody had an idea that this was going to be happening,” recalls Leng.
But as he looked to set his craft down, he saw a wing starting to dig into his lawn. “Uh-oh, this is not good,” he thought. “The aircraft is going to spin out of control. But what instead happened was the propulsion systems revved up and down so rapidly that as the aircraft did that skidding turn, that wing corner just dragged along my lawn exactly in the direction I was holding the aircraft, and then came to a stable landing,” says Leng. At that point, he knew that such an aircraft was viable “because to have that sort of an interference in the aircraft and for the control systems to be able to control it was truly remarkable.”
It was the second time anyone, anywhere had ever flown an eVTOL aircraft.
Today, some 350 organizations in 48 countries are designing, building, or flying eVTOLs, according to the Vertical Flight Society. These companies are fueled by more than US $7 billion and perhaps as much as $10 billion in startup funding. And yet, 11 years after Leng’s flight, no eVTOLs have been delivered to customers or are being produced at commercial scale. None have even been certified by a civil aviation authority in the West, such as the U.S. Federal Aviation Administration or the European Union Aviation Safety Agency.
But 2023 looks to be a pivotal year for eVTOLs. Several well-funded startups are expected to reach important early milestones in the certification process. And the company Leng founded, Opener, could beat all of them by making its first deliveries—which would also be the first for any maker of an eVTOL.
Today, some 350 organizations in 48 countries are designing, building, or flying eVTOLs, according to the Vertical Flight Society.
As of late October, the company had built at its facility in Palo Alto, Calif., roughly 70 aircraft—considerably more than are needed for simple testing and evaluation. It had flown more than 30 of them. And late in 2022, the company had begun training a group of operators on a state-of-the-art virtual-reality simulator system.
Opener’s highly unusual, single-seat flier is intended for personal use rather than transporting passengers, which makes it almost unique. Opener intends to have its aircraft classified as an “ultralight,” enabling it to bypass the rigorous certification required for commercial-transport and other aircraft types. The certification issue looms as a major unknown over the entire eVTOL enterprise, at least in the United States, because, as the blog Jetlaw.com noted last August, “the FAA has no clear timeline or direction on when it will finalize a permanent certification process for eVTOL.”
Opener’s strategy is not without risks, either. For one, there’s no guarantee that the FAA will ultimately agree that Opener’s aircraft, called BlackFly, qualifies as an ultralight. And not everyone is happy with this approach. “My concern is, these companies that are saying they can be ultralights and start flying around in public are putting at risk a $10 billion [eVTOL] industry,” says Mark Moore, founder and chief executive of Whisper Aero in Crossville, Tenn. “Because if they crash, people won’t know the difference” between the ultralights and the passenger eVTOLs, he adds. “To me, that’s unacceptable.” Previously, Moore led a team at NASA that designed a personal-use eVTOL and then served as engineering director at Uber’s Elevate initiative.
A BlackFly eVTOL took off on 1 October, 2022, at the Pacific Airshow in Huntington Beach, Calif. Irfan Khan/Los Angeles Times/Getty Images
Opener’s aircraft is as singular as its business model. It’s a radically different kind of aircraft, and it sprang almost entirely from Leng’s fertile mind.
“As a kid,” he says, “I already envisioned what it would be like to have an aircraft that could seamlessly do a vertical takeoff, fly, and land again without any encumbrances whatsoever.” It was a vision that never left him, from a mechanical-engineering degree at the University of Toronto, management jobs in the aerospace industry, starting a company and making a pile of money by inventing a new kind of memory foam, and then retiring in 1996 at the age of 36.
The fundamental challenge to designing a vertical-takeoff aircraft is endowing it with both vertical lift and efficient forward cruising. Most eVTOL makers achieve this by physically tilting multiple large rotors from a vertical rotation axis, for takeoff, to a horizontal one, for cruising. But the mechanism for tilting the rotors must be extremely robust, and therefore it inevitably adds substantial complexity and weight. Such tilt-rotors also entail significant compromises and trade-offs in the size of the rotors and their placement relative to the wings.
Opener’s BlackFly ingeniously avoids having to make those trade-offs and compromises. It has two wings, one in front and one behind the pilot. Affixed to each wing are four motors and rotors—and these never change their orientation relative to the wings. Nor do the wings move relative to the fuselage. Instead, the entire aircraft rotates in the air to transition between vertical and horizontal flight.
To control the aircraft, the pilot moves a joystick, and those motions are instantly translated by redundant flight-control systems into commands that alter the relative thrust among the eight motor-propellers.
Visually, it’s an astounding aircraft, like something from a 1930s pulp sci-fi magazine. It’s also a triumph of engineering.
Leng says the journey started for him in 2008, when “I just serendipitously stumbled upon the fact that all the key technologies for making electric VTOL human flight practical were coming to a nexus.”
The journey that made Leng’s dream a reality kicked into high gear in 2014 when a chance meeting with investor Sebastian Thrun at an aviation conference led to Google cofounder Larry Page investing in Leng’s project.
Leng started in his basement in 2010, spending his own money on a mélange of home-built and commercially available components. The motors were commercial units that Leng modified himself, the motor controllers were German and off the shelf, the inertial-measurement unit was open source and based on an Arduino microcontroller. The batteries were modified model-aircraft lithium-polymer types.
“The main objective behind this was proof of concept,” he says.“I had to prove it to myself, because up until that point, they were just equations on a piece of paper. I had to get to the point where I knew that this could be practical.”
After his front-yard flight in 2011, there followed several years of refining and rebuilding all of the major components until they achieved the specifications Leng wanted. “Everything on BlackFly is from first principles,” he declares.
The motors started out generating 160 newtons (36 pounds) of static thrust. It was way too low. “I actually tried to purchase motors and motor controllers from companies that manufactured those, and I specifically asked them to customize those motors for me, by suggesting a number of changes,” he says. “I was told that, no, those changes won’t work.”
So he started designing his own brushless AC motors. “I did not want to design motors,” says Leng. “In the end, I was stunned at how much improvement we could make by just applying first principles to this motor design.”
Eleven years after Leng’s flight, no eVTOLs have been delivered to customers or are being produced at commercial scale.
To increase the power density, he had to address the tendency of a motor in an eVTOL to overheat at high thrust, especially during hover, when cooling airflow over the motor is minimal. He began by designing a system to force air through the motor. Then he began working on the rotor of the motor (not to be confused with the rotor wings that lift and propel the aircraft). This is the spinning part of a motor, which is typically a single piece of electrical steel. It’s an iron alloy with very high magnetic permeability.
By layering the steel of the rotor, Leng was able to greatly reduce its heat generation, because the thinner layers of steel limited the eddy currents in the steel that create heat. Less heat meant he could use higher-strength neodymium magnets, which would otherwise become demagnetized. Finally, he rearranged those magnets into a configuration called a Halbach array. In the end Leng’s motors were able to produce 609 newtons (137 lbs.) of thrust.
Overall, the 2-kilogram motors are capable of sustaining 20 kilowatts, for a power density of 10 kilowatts per kilogram, Leng says. It’s an extraordinary figure. One of the few motor manufacturers claiming a density in that range is H3X Technologies, which says its HPDM-250 clocks in at 12 kw/kg.
The brain of the BlackFly consists of three independent flight controllers, which calculate the aircraft’s orientation and position, based on readings from the inertial-measurement units, GPS receivers, and magnetometers. They also use pitot tubes to measure airspeed. The flight controllers continually cross-check their outputs to make sure they agree. They also feed instructions, based on the operator’s movement of the joystick, to the eight motor controllers (one for each motor).
Equipped with these sophisticated flight controllers, the fly-by-wire BlackFly is similar in that regard to the hobbyist drones that rely on processors and clever algorithms to avoid the tricky manipulations of sticks, levers, and pedals required to fly a traditional fixed- or rotary-wing aircraft.
That sophisticated, real-time control will allow a far larger number of people to consider purchasing a BlackFly when it becomes available. In late November, Opener had not disclosed a likely purchase price, but in the past the company had suggested that BlackFly would cost as much as a luxury SUV. So who might buy it? CEO Ken Karklin points to several distinct groups of potential buyers who have little in common other than wealth.
There are early tech adopters and also people who are already aviators and are “passionate about the future of electric flight, who love the idea of being able to have their own personal vertical-takeoff-and-landing, low-maintenance, clean aircraft that they can fly in rural and uncongested areas,” Karklin says. “One of them is a business owner. He has a plant that’s a 22-mile drive but would only be a 14-mile flight, and he wants to install charging infrastructure on either end and wants to use it to commute every day. We love that.”
Others are less certain about how, or even whether, this market segment will establish itself. “When it comes to personal-use eVTOLs, we are really struggling to see the business case,” says Sergio Cecutta, founder and partner at SMG Consulting, where he studies eVTOLs among other high-tech transportation topics. “I’m not saying they won’t sell. It’s how many will they sell?” He notes that Opener is not the only eVTOL maker pursuing a path to success through the ultralight or some other specialized FAA category. As of early November, the list included Alauda Aeronautics, Air, Alef, Bellwether Industries, Icon Aircraft, Jetson, Lift Aircraft, and Ryse Aero Technologies.
What makes Opener special? Both Karklin and Leng emphasize the value of all that surrounds the BlackFly aircraft. For example, there are virtual-reality-based simulators that they say enable them to fully train an operator in 10 to 15 hours. The aircraft themselves are heavily instrumented: “Every flight, literally, there’s over 1,000 parameters that are recorded, some of them at 1,000 hertz, some 100 Hz, 10 Hz, and 1 Hz,” says Leng. “All that information is stored on the aircraft and downloaded to our database at the end of the flight. When we go and make a software change, we can do what’s called regression testing by running that software using all the data from our previous flights. And we can compare the outputs against what the outputs were during any specific flight and can automatically confirm that the changes that we’ve made are without any issues. And we can also compare, to see if they make an improvement.”
Ed Lu, a former NASA astronaut and executive at Google, sits on Opener’s safety-review board. He says what impressed him most when he first met the BlackFly team was “the fact that they had based their entire development around testing. They had a wealth of flight data from flying this vehicle in a drone mode, an unmanned mode.” Having all that data was key. “They could make their decisions based not on analysis, but after real-world operations,” Lu says, adding that he is particularly impressed by Opener’s ability to manage all the flight data. “It allows them to keep track of every aircraft, what sensors are in which aircraft, which versions of code, all the way down to the flights, to what happened in each flight, to videos of what’s happening.” Lu thinks this will be a huge advantage once the aircraft is released into the “real” world.
Karklin declines to comment on whether an ultralight approval, which is governed by what the FAA designates “ Part 103,” might be an opening move toward an FAA type certification in the future. “This is step one for us, and we are going to be very, very focused on personal air vehicles for recreational and fun purposes for the foreseeable future,” he says. “But we’ve also got a working technology stack here and an aircraft architecture that has considerable utility beyond the realm of Part-103 [ultralight] aircraft, both for crewed and uncrewed applications.” Asked what his immediate goals are, Karklin responds without hesitating. “We will be the first eVTOL company, we believe, in serial production, with a small but steadily growing revenue and order book, and with a growing installed base of cloud-connected aircraft that with every flight push all the telemetry, all the flight behavior, all the component behavior, all the operator-behavior data representing all of this up to the cloud, to be ingested by our back office, and processed. And that provides us a lot of opportunity.”
This article appears in the January 2023 print issue as “Finally, an eVTOL You Can Buy Soonish.”
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
In February, Meta released its large language model: LLaMA. Unlike OpenAI and its ChatGPT, Meta didn’t just give the world a chat window to play with. Instead, it released the code into the open-source community, and shortly thereafter the model itself was leaked. Researchers and programmers immediately started modifying it, improving it, and getting it to do things no one else anticipated. And their results have been immediate, innovative, and an indication of how the future of this technology is going to play out. Training speeds have hugely increased, and the size of the models themselves has shrunk to the point that you can create and run them on a laptop. The world of AI research has dramatically changed...
A rocket built by Indian startup Skyroot has become the country’s first privately developed launch vehicle to reach space, following a successful maiden flight earlier today. The suborbital mission is a major milestone for India’s private space industry, say experts, though more needs to be done to nurture the fledgling sector.
The Vikram-S rocket, named after the founder of the Indian space program, Vikram Sarabhai, lifted off from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre, on India’s east coast, at 11:30 a.m. local time (1 a.m. eastern time). It reached a peak altitude of 89.5 kilometers (55.6 miles), crossing the 80-km line that NASA counts as the boundary of space, but falling just short of the 100 km recognized by the Fédération Aéronautique Internationale.
In the longer run, India’s space industry has ambitions of capturing a significant chunk of the global launch market.
Pawan Kumar Chandana, cofounder of the Hyderabad-based startup, says the success of the launch is a major victory for India’s nascent space industry, but the buildup to the mission was nerve-racking. “We were pretty confident on the vehicle, but, as you know, rockets are very notorious for failure,” he says. “Especially in the last 10 seconds of countdown, the heartbeat was racing up. But once the vehicle had crossed the launcher and then went into the stable trajectory, I think that was the moment of celebration.”
At just 6 meters (20 feet) long and weighing only around 550 kilograms (0.6 tonnes), the Vikram-S is not designed for commercial use. Today’s mission, called Prarambh, which means “the beginning” in Sanskrit, was designed to test key technologies that will be used to build the startup’s first orbital rocket, the Vikram I. The rocket will reportedly be capable of lofting as much as 480 kg up to an 500-km altitude and is slated for a maiden launch next October.
Skyroot cofounder Pawan Kumar Chandana standing in front of the Vikram-S rocket at the Satish Dhawan Space Centre, on the east coast of India.Skyroot
In particular, the mission has validated Skyroot’s decision to go with a novel all-carbon fiber structure to cut down on weight, says Chandana. It also allowed the company to test 3D-printed thrusters, which were used for spin stabilization in Vikram-S but will power the upper stages of its later rockets. Perhaps the most valuable lesson, though, says Chandana, was the complexity of interfacing Skyroot's vehicle with ISRO’s launch infrastructure. “You can manufacture the rocket, but launching it is a different ball game,” he says. “That was a great learning experience for us and will really help us accelerate our orbital vehicle.”
Skyroot is one of several Indian space startups looking to capitalize on recent efforts by the Indian government to liberalize its highly regulated space sector. Due to the dual-use nature of space technology, ISRO has historically had a government-sanctioned monopoly on most space activities, says Rajeswari Pillai Rajagopalan, director of the Centre for Security, Strategy and Technology at the Observer Research Foundation think tank, in New Delhi. While major Indian engineering players like Larsen & Toubro and Godrej Aerospace have long supplied ISRO with components and even entire space systems, the relationship has been one of a supplier and vendor, she says.
But in 2020, Finance Minister Nirmala Sitharaman announced a series of reforms to allow private players to build satellites and launch vehicles, carry out launches, and provide space-based services. The government also created the Indian National Space Promotion and Authorisation Centre (InSpace), a new agency designed to act as a link between ISRO and the private sector, and affirmed that private companies would be able to take advantage of ISRO’s facilities.
The first launch of a private rocket from an ISRO spaceport is a major milestone for the Indian space industry, says Rajagopalan. “This step itself is pretty crucial, and it’s encouraging to other companies who are looking at this with a lot of enthusiasm and excitement,” she says. But more needs to be done to realize the government’s promised reforms, she adds. The Space Activities Bill that is designed to enshrine the country’s space policy in legislation has been languishing in draft form for years, and without regulatory clarity, it’s hard for the private sector to justify significant investments. “These are big, bold statements, but these need to be translated into actual policy and regulatory mechanisms,” says Rajagopalan.
Skyroot’s launch undoubtedly signals the growing maturity of India’s space industry, says Saurabh Kapil, associate director in PwC’s space practice. “It’s a critical message to the Indian space ecosystem, that we can do it, we have the necessary skill set, we have those engineering capabilities, we have those manufacturing or industrialization capabilities,” he says.
The Vikram-S rocket blasting off from the Satish Dhawan Space Centre, on the east coast of India.Skyroot
However, crossing this technical milestone is only part of the challenge, he says. The industry also needs to demonstrate a clear market for the kind of launch vehicles that companies like Skyroot are building. While private players are showing interest in launching small satellites for applications like agriculture and infrastructure monitoring, he says, these companies will be able to build sustainable businesses only if they are allowed to compete for more lucrative government and defense-sector contacts.
In the longer run, though, India’s space industry has ambitions of capturing a significant chunk of the global launch market, says Kapil. ISRO has already developed a reputation for both reliability and low cost—its 2014 mission to Mars cost just US $74 million, one-ninth the cost of a NASA Mars mission launched the same week. That is likely to translate to India’s private space industry, too, thanks to a considerably lower cost of skilled labor, land, and materials compared with those of other spacefaring nations, says Kapil. “The optimism is definitely there that because we are low on cost and high on reliability, whoever wants to build and launch small satellites is largely going to come to India,” he says.
Non-fungible tokens (NFTs) are the most popular digital assets today, capturing the attention of cryptocurrency investors, whales and people from around the world. People find it amazing that some users spend thousands or millions of dollars on a single NFT-based image of a monkey or other token, but you can simply take a screenshot for free. So here we share some freuently asked question about NFTs.
NFT stands for non-fungible token, which is a cryptographic token on a blockchain with unique identification codes that distinguish it from other tokens. NFTs are unique and not interchangeable, which means no two NFTs are the same. NFTs can be a unique artwork, GIF, Images, videos, Audio album. in-game items, collectibles etc.
A blockchain is a distributed digital ledger that allows for the secure storage of data. By recording any kind of information—such as bank account transactions, the ownership of Non-Fungible Tokens (NFTs), or Decentralized Finance (DeFi) smart contracts—in one place, and distributing it to many different computers, blockchains ensure that data can’t be manipulated without everyone in the system being aware.
The value of an NFT comes from its ability to be traded freely and securely on the blockchain, which is not possible with other current digital ownership solutionsThe NFT points to its location on the blockchain, but doesn’t necessarily contain the digital property. For example, if you replace one bitcoin with another, you will still have the same thing. If you buy a non-fungible item, such as a movie ticket, it is impossible to replace it with any other movie ticket because each ticket is unique to a specific time and place.
One of the unique characteristics of non-fungible tokens (NFTs) is that they can be tokenised to create a digital certificate of ownership that can be bought, sold and traded on the blockchain.
As with crypto-currency, records of who owns what are stored on a ledger that is maintained by thousands of computers around the world. These records can’t be forged because the whole system operates on an open-source network.
NFTs also contain smart contracts—small computer programs that run on the blockchain—that give the artist, for example, a cut of any future sale of the token.
Non-fungible tokens (NFTs) aren't cryptocurrencies, but they do use blockchain technology. Many NFTs are based on Ethereum, where the blockchain serves as a ledger for all the transactions related to said NFT and the properties it represents.5) How to make an NFT?
Anyone can create an NFT. All you need is a digital wallet, some ethereum tokens and a connection to an NFT marketplace where you’ll be able to upload and sell your creations
When you purchase a stock in NFT, that purchase is recorded on the blockchain—the bitcoin ledger of transactions—and that entry acts as your proof of ownership.
The value of an NFT varies a lot based on the digital asset up for grabs. People use NFTs to trade and sell digital art, so when creating an NFT, you should consider the popularity of your digital artwork along with historical statistics.
In the year 2021, a digital artist called Pak created an artwork called The Merge. It was sold on the Nifty Gateway NFT market for $91.8 million.
Non-fungible tokens can be used in investment opportunities. One can purchase an NFT and resell it at a profit. Certain NFT marketplaces let sellers of NFTs keep a percentage of the profits from sales of the assets they create.
Many people want to buy NFTs because it lets them support the arts and own something cool from their favorite musicians, brands, and celebrities. NFTs also give artists an opportunity to program in continual royalties if someone buys their work. Galleries see this as a way to reach new buyers interested in art.
There are many places to buy digital assets, like opensea and their policies vary. On top shot, for instance, you sign up for a waitlist that can be thousands of people long. When a digital asset goes on sale, you are occasionally chosen to purchase it.
To mint an NFT token, you must pay some amount of gas fee to process the transaction on the Etherum blockchain, but you can mint your NFT on a different blockchain called Polygon to avoid paying gas fees. This option is available on OpenSea and this simply denotes that your NFT will only be able to trade using Polygon's blockchain and not Etherum's blockchain. Mintable allows you to mint NFTs for free without paying any gas fees.
The answer is no. Non-Fungible Tokens are minted on the blockchain using cryptocurrencies such as Etherum, Solana, Polygon, and so on. Once a Non-Fungible Token is minted, the transaction is recorded on the blockchain and the contract or license is awarded to whoever has that Non-Fungible Token in their wallet.
You can sell your work and creations by attaching a license to it on the blockchain, where its ownership can be transferred. This lets you get exposure without losing full ownership of your work. Some of the most successful projects include Cryptopunks, Bored Ape Yatch Club NFTs, SandBox, World of Women and so on. These NFT projects have gained popularity globally and are owned by celebrities and other successful entrepreneurs. Owning one of these NFTs gives you an automatic ticket to exclusive business meetings and life-changing connections.
That’s a wrap. Hope you guys found this article enlightening. I just answer some question with my limited knowledge about NFTs. If you have any questions or suggestions, feel free to drop them in the comment section below. Also I have a question for you, Is bitcoin an NFTs? let me know in The comment section below
Here are some answers about the new social media network Bluesky that you don’t need an invite to see.
The post Is Bluesky Billionaire-Proof? appeared first on The Intercept.
First-year college students are understandably frustrated when they can’t get into popular upper-level electives. But they usually just gripe. Paras Jha was an exception. Enraged that upper-class students were given priority to enroll in a computer-science elective at Rutgers, the State University of New Jersey, Paras decided to crash the registration website so that no one could enroll.
On Wednesday night, 19 November 2014, at 10:00 p.m. EST—as the registration period for first-year students in spring courses had just opened—Paras launched his first distributed denial-of-service (DDoS) attack. He had assembled an army of some 40,000 bots, primarily in Eastern Europe and China, and unleashed them on the Rutgers central authentication server. The botnet sent thousands of fraudulent requests to authenticate, overloading the server. Paras’s classmates could not get through to register.
The next semester Paras tried again. On 4 March 2015, he sent an email to the campus newspaper, The Daily Targum: “A while back you had an article that talked about the DDoS attacks on Rutgers. I’m the one who attacked the network.… I will be attacking the network once again at 8:15 pm EST.” Paras followed through on his threat, knocking the Rutgers network offline at precisely 8:15 p.m.
On 27 March, Paras unleashed another assault on Rutgers. This attack lasted four days and brought campus life to a standstill. Fifty thousand students, faculty, and staff had no computer access from campus.
On 29 April, Paras posted a message on Pastebin, a website popular with hackers for sending anonymous messages. “The Rutgers IT department is a joke,” he taunted. “This is the third time I have launched DDoS attacks against Rutgers, and every single time, the Rutgers infrastructure crumpled like a tin can under the heel of my boot.”
Paras was furious that Rutgers chose Incapsula, a small cybersecurity firm based in Massachusetts, as its DDoS-mitigation provider. He claimed that Rutgers chose the cheapest company. “Just to show you the poor quality of Incapsula’s network, I have gone ahead and decimated the Rutgers network (and parts of Incapsula), in the hopes that you will pick another provider that knows what they are doing.”
Paras’s fourth attack on the Rutgers network, taking place during finals, caused chaos and panic on campus. Paras reveled in his ability to shut down a major state university, but his ultimate objective was to force it to abandon Incapsula. Paras had started his own DDoS-mitigation service, ProTraf Solutions, and wanted Rutgers to pick ProTraf over Incapsula. And he wasn’t going to stop attacking his school until it switched.
Paras Jha was born and raised in Fanwood, a leafy suburb in central New Jersey. When Paras was in the third grade, a teacher recommended that he be evaluated for attention deficit hyperactivity disorder, but his parents didn’t follow through.
As Paras progressed through elementary school, his struggles increased. Because he was so obviously intelligent, his teachers and parents attributed his lackluster performance to laziness and apathy. His perplexed parents pushed him even harder.
Paras sought refuge in computers. He taught himself how to code when he was 12 and was hooked. His parents happily indulged this passion, buying him a computer and providing him with unrestricted Internet access. But their indulgence led Paras to isolate himself further, as he spent all his time coding, gaming, and hanging out with his online friends.
Paras was particularly drawn to the online game Minecraft. In ninth grade, he graduated from playing Minecraft to hosting servers. It was in hosting game servers that he first encountered DDoS attacks.
Minecraft server administrators often hire DDoS services to knock rivals offline. As Paras learned more sophisticated DDoS attacks, he also studied DDoS defense. As he became proficient in mitigating attacks on Minecraft servers, he decided to create ProTraf Solutions.
Paras’s obsession with Minecraft attacks and defense, compounded by his untreated ADHD, led to an even greater retreat from family and school. His poor academic performance in high school frustrated and depressed him. His only solace was Japanese anime and the admiration he gained from the online community of Minecraft DDoS experts.
Paras’s struggles deteriorated into paralysis when he enrolled in Rutgers, studying for a B.S. in computer science. Without his mother’s help, he was unable to regulate the normal demands of living on his own. He could not manage his sleep, schedule, or study. Paras was also acutely lonely. So he immersed himself in hacking.
Paras and two hacker friends, Josiah White and Dalton Norman, decided to go after the kings of DDoS—a gang known as VDoS. The gang had been providing these services to the world for four years, which is an eternity in cybercrime. The decision to fight experienced cybercriminals may seem brave, but the trio were actually older than their rivals. The VDoS gang members had been only 14 years old when they started to offer DDoS services from Israel in 2012. These 19-year-old American teenagers would be going to battle against two 18-year-old Israeli teenagers. The war between the two teenage gangs would not only change the nature of malware. Their struggle for dominance in cyberspace would create a doomsday machine.
The Mirai botnet, with all its devastating potential, was not the product of an organized-crime or nation-state hacking group—it was put together by three teenage boys. They rented out their botnet to paying customers to do mischief with and used it to attack chosen targets of their own. But the full extent of the danger became apparent only later, after this team made the source code for their malware public. Then others used it to do greater harm: crashing Germany’s largest Internet service provider; attacking Dyn’s Domain Name System servers, making the Internet unusable for millions; and taking down all of Liberia’s Internet—to name a few examples.
The Mirai botnet exploited vulnerable Internet of Things devices, such as Web-connected video cameras, ones that supported Telnet, an outdated system for logging in remotely. Owners of these devices rarely updated their passwords, so they could be easily guessed using a strategy called a dictionary attack.
The first step in assembling a botnet was to scan random IP addresses looking for vulnerable IoT devices, ones whose passwords could be guessed. Once identified, the addresses of these devices were passed to a “loader,” which would put the malware on the vulnerable device. Infected devices located all over the world could then be used for distributed denial-of-service attacks, orchestrated by a command-and-control (C2) server. When not attacking a target, these bots would be enlisted to scan for more vulnerable devices to infect.
Botnet malware is useful for financially motivated crime because botmasters can tell the bots in their thrall to implant malware on vulnerable machines, send phishing emails, or engage in click fraud, in which botnets profit by directing bots to click pay-per-click ads. Botnets are also great DDoS weapons because they can be trained on a target and barrage it from all directions. One day in February 2000, for example, the hacker MafiaBoy knocked out Fifa.com, Amazon.com, Dell, E-Trade, eBay, CNN, as well as Yahoo, at the time the largest search engine on the Internet.
After taking so many major websites offline, MafiaBoy was deemed a national -security threat. President Clinton ordered a national manhunt to find him. In April 2000, MafiaBoy was arrested and charged, and in January 2001 he pled guilty to 58 charges of denial-of-service attacks. Law enforcement did not reveal MafiaBoy’s real name, as this national-security threat was 15 years old.
Both MafiaBoy and the VDoS crew were adolescent boys who crashed servers. But whereas MafiaBoy did it for the sport, VDoS did it for the money. Indeed, these teenage Israeli kids were pioneering tech entrepreneurs. They helped launch a new form of cybercrime: DDoS as a service. With it, anyone could now hack with the click of a button, no technical knowledge needed.
It might be surprising that DDoS providers could advertise openly on the Web. After all, DDoSing another website is illegal everywhere. To get around this, these “booter services” have long argued they perform a legitimate function: providing those who set up Web pages a means to stress test websites.
In theory, such services do play an important function. But only in theory. As a booter-service provider admitted to University of Cambridge researchers, “We do try to market these services towards a more legitimate user base, but we know where the money comes from.”
Paras dropped out of Rutgers in his sophomore year and, with his father’s encouragement, spent the next year focused on building ProTraf Solutions, his DDoS-mitigation business. And just like a mafia don running a protection racket, he had to make that protection needed. After launching four DDoS attacks his freshman year, he attacked Rutgers yet again in September 2015, still hoping that his former school would give up on Incapsula. Rutgers refused to budge.
ProTraf Solutions was failing, and Paras needed cash. In May 2016, Paras reached out to Josiah White. Like Paras, Josiah frequented Hack Forums. When he was 15, he developed major portions of Qbot, a botnet worm that at its height in 2014 had enslaved half a million computers. Now 18, Josiah switched sides and worked with his friend Paras at ProTraf doing DDoS mitigation.
The hacker’s command-and-control (C2) server orchestrates the actions of many geographically distributed bots (computers under its control). Those computers, which could be IoT devices like IP cameras, can be directed to overwhelm the victim’s servers with unwanted traffic, making them unable to respond to legitimate requests.
IEEE Spectrum
But Josiah soon returned to hacking and started working with Paras to take the Qbot malware, improve it, and build a bigger, more powerful DDoS botnet. Paras and Josiah then partnered with 19-year-old Dalton Norman. The trio turned into a well-oiled team: Dalton found the vulnerabilities; Josiah updated the botnet malware to exploit these vulnerabilities; and Paras wrote the C2—software for the command-and-control server—for controlling the botnet.
But the trio had competition. Two other DDoS gangs—Lizard Squad and VDoS—decided to band together to build a giant botnet. The collaboration, known as PoodleCorp, was successful. The amount of traffic that could be unleashed on a target from PoodleCorp’s botnet hit a record value of 400 gigabits per second, almost four times the rate that any previous botnet had achieved. They used their new weapon to attack banks in Brazil, U.S. government sites, and Minecraft servers. They achieved this firepower by hijacking 1,300 Web-connected cameras. Web cameras tend to have powerful processors and good connectivity, and they are rarely patched. So a botnet that harnesses video has enormous cannons at its disposal.
While PoodleCorp was on the rise, Paras, Josiah, and Dalton worked on a new weapon. By the beginning of August 2016, the trio had completed the first version of their botnet malware. Paras called the new code Mirai, after the anime series Mirai Nikki.
When Mirai was released, it spread like wildfire. In its first 20 hours, it infected 65,000 devices, doubling in size every 76 minutes. And Mirai had an unwitting ally in the botnet war then raging.
Up in Anchorage, Alaska, the FBI cyber unit was building a case against VDoS. The FBI was unaware of Mirai or its war with VDoS. The agents did not regularly read online boards such as Hack Forums. They did not know that the target of their investigation was being decimated. The FBI also did not realize that Mirai was ready to step into the void.
The head investigator in Anchorage was Special Agent Elliott Peterson. A former U.S. Marine, Peterson is a calm and self-assured agent with a buzz cut of red hair. At the age of 33, Peterson had returned to his native state of Alaska to prosecute cybercrime.
On 8 September 2016, the FBI’s Anchorage and New Haven cyber units teamed up and served a search warrant in Connecticut on the member of PoodleCorp who ran the C2 that controlled all its botnets. On the same day, the Israeli police arrested the VDoS founders in Israel. Suddenly, PoodleCorp was no more.
The Mirai group waited a couple of days to assess the battlefield. As far as they could tell, they were the only botnet left standing. And they were ready to use their new power. Mirai won the war because Israeli and American law enforcement arrested the masterminds behind PoodleCorp. But Mirai would have triumphed anyway, as it was ruthlessly efficient in taking control of Internet of Things devices and excluding competing malware.
A few weeks after the arrests of those behind VDoS, Special Agent Peterson found his next target: the Mirai botnet. In the Mirai case, we do not know the exact steps that Peterson’s team took in their investigation: Court orders in this case are currently “under seal,” meaning that the court deems them secret. But from public reporting, we know that Peterson’s team got its break in the usual way—from a Mirai victim: Brian Krebs, a cybersecurity reporter whose blog was DDoSed by the Mirai botnet on 25 September.
The FBI uncovered the IP address of the C2 and loading servers but did not know who had opened the accounts. Peterson’s team likely subpoenaed the hosting companies to learn the names, emails, cellphones, and payment methods of the account holders. With this information, it would seek court orders and then search warrants to acquire the content of the conspirators’ conversations.
Still, the hunt for the authors of the Mirai malware must have been a difficult one, given how clever these hackers were. For example, to evade detection Josiah didn’t just use a VPN. He hacked the home computer of a teenage boy in France and used his computer as the “exit node.” The orders for the botnet, therefore, came from this computer. Unfortunately for the owner, he was a big fan of Japanese anime and thus fit the profile of the hacker. The FBI and the French police discovered their mistake after they raided the boy’s house.
After wielding its power for two months, Paras dumped nearly the complete source code for Mirai on Hack Forums. “I made my money, there’s lots of eyes looking at IOT now, so it’s time to GTFO [Get The F*** Out],” Paras wrote. With that code dump, Paras had enabled anyone to build their own Mirai. And they did.
Dumping code is reckless, but not unusual. If the police find source code on a hacker’s devices, they can claim that they “downloaded it from the Internet.” Paras’s irresponsible disclosure was part of a false-flag operation meant to throw off the FBI, which had been gathering evidence indicating Paras’s involvement in Mirai and had contacted him to ask questions. Though he gave the agent a fabricated story, getting a text from the FBI probably terrified him.
Mirai had captured the attention of the cybersecurity community and of law enforcement. But not until after Mirai’s source code dropped would it capture the attention of the entire United States. The first attack after the dump was on 21 October, on Dyn, a company based in Manchester, N.H., that provides Domain Name System (DNS) resolution services for much of the East Coast of the United States.
Mike McQuade
It began at 7:07 a.m. EST with a series of 25-second attacks, thought to be tests of the botnet and Dyn’s infrastructure. Then came the sustained assaults: of one hour, and then five hours. Interestingly, Dyn was not the only target. Sony’s PlayStation video infrastructure was also hit. Because the torrents were so immense, many other websites were affected. Domains such as cnn.com, facebook.com, and nytimes.com wouldn’t work. For the vast majority of these users, the Internet became unusable. At 7:00 p.m., another 10-hour salvo hit Dyn and PlayStation.
Further investigations confirmed the point of the attack. Along with Dyn and PlayStation traffic, the botnet targeted Xbox Live and Nuclear Fallout game-hosting servers. Nation-states were not aiming to hack the upcoming U.S. elections. Someone was trying to boot players off their game servers. Once again—just like MafiaBoy, VDoS, Paras, Dalton, and Josiah—the attacker was a teenage boy, this time a 15-year-old in Northern Ireland named Aaron Sterritt.
Meanwhile, the Mirai trio left the DDoS business, just as Paras said. But Paras and Dalton did not give up on cybercrime. They just took up click fraud.
Click fraud was more lucrative than running a booter service. While Mirai was no longer as big as it had been, the botnet could nevertheless generate significant advertising revenue. Paras and Dalton earned as much money in one month from click fraud as they ever made with DDoS. By January 2017, they had earned over US $180,000, as opposed to a mere $14,000 from DDoSing.
Had Paras and his friends simply shut down their booter service and moved on to click fraud, the world would likely have forgotten about them. But by releasing the Mirai code, Paras created imitators. Dyn was the first major copycat attack, but many others followed. And due to the enormous damage these imitators wrought, law enforcement was intensely interested in the Mirai authors.
After collecting information tying Paras, Josiah, and Dalton to Mirai, the FBI quietly brought each up to Alaska. Peterson’s team showed the suspects its evidence and gave them the chance to cooperate. Given that the evidence was irrefutable, each folded.
Paras Jha was indicted twice, once in New Jersey for his attack on Rutgers, and once in Alaska for Mirai. Both indictments carried the same charge—one violation of the Computer Fraud and Abuse Act. Paras faced up to 10 years in federal prison for his actions. Josiah and Dalton were only indicted in Alaska and so faced 5 years in prison.
The trio pled guilty. At the sentencing hearing held on 18 September 2018, in Anchorage, each of the defendants expressed remorse for his actions. Josiah White’s lawyer conveyed his client’s realization that Mirai was “a tremendous lapse in judgment.”
Unlike Josiah, Paras spoke directly to Judge Timothy Burgess in the courtroom. Paras began by accepting full responsibility for his actions and expressed his deep regret for the trouble he’d caused his family. He also apologized for the harm he’d caused businesses and, in particular, Rutgers, the faculty, and his fellow students.
The Department of Justice made the unusual decision not to ask for jail time. In its sentencing memo, the government noted “the divide between [the defendants’] online personas, where they were significant, well-known, and malicious actors in the DDoS criminal milieu and their comparatively mundane ‘real lives’ where they present as socially immature young men living with their parents in relative obscurity.” It recommended five years of probation and 2,500 hours of community service.
The government had one more request —for that community service “to include continued work with the FBI on cybercrime and cybersecurity matters.” Even before sentencing, Paras, Josiah, and Dalton had logged close to 1,000 hours helping the FBI hunt and shut down Mirai copycats. They contributed to more than a dozen law enforcement and research efforts. In one instance, the trio assisted in stopping a nation-state hacking group. They also helped the FBI prevent DDoS attacks aimed at disrupting Christmas-holiday shopping. Judge Burgess accepted the government’s recommendation, and the trio escaped jail time.
The most poignant moments in the hearing were Paras’s and Dalton’s singling out for praise the very person who caught them. “Two years ago, when I first met Special Agent Elliott Peterson,” Paras told the court, “I was an arrogant fool believing that somehow I was untouchable. When I met him in person for the second time, he told me something I will never forget: ‘You’re in a hole right now. It’s time you stop digging.’ ” Paras finished his remarks by thanking “my family, my friends, and Agent Peterson for helping me through this.”
This article appears in the June 2023 print issue as “Patch Me if You Can.”
A rocket carrying CubeSats launched into Earth orbit two years ago, on 22 March 2021. Two of those CubeSats represented competing approaches to bringing the Internet of Things (IoT) to space. One, operated by Lacuna Space, uses a protocol called LoRaWAN, a long-range, low-power protocol owned by Semtech. The other, owned by Sateliot, uses the narrowband IoT protocol, following in the footsteps of OQ Technology, which launched a similar IoT satellite demonstration in 2019. And separately, in late 2022, the cellular industry standard-setter 3GPP incorporated satellite-based 5G into standard cellular service with its release 17.
In other words, there is now an IoT space race.
In addition to Lacuna and Sateliot, OQ Technology is also nipping at the heels of satellite telecom incumbents such as Iridium, Orbcomm, and Inmarsat for a share of the growing satellite-IoT subscriber market. OQ Technology has three satellites in low Earth orbit and plans to launch seven more this year, says OQ Technology’s chief innovation officer, Prasanna Nagarajan. OQ has paying customers in the oil and gas, agriculture, and transport logistics industries.
Sateliot, based in Barcelona, has the satellite it launched in 2021 in orbit and plans to launch four more this year, says Sateliot’s business development manager, Paula Caudet. The company is inviting early adopters to sample its service for free this year while it builds more coverage. “Certain use cases are fine with flybys every few hours, such as agricultural sensors,” Caudet says.
OQ Technology claims it will launch enough satellites to offer at least hourly coverage by 2024 and near-real-time coverage later that year. Sateliot is also aiming for better-than-hourly coverage sometime in 2024 and near-real-time coverage in 2025.
Sateliot
Incumbent satellite operators are already offering IoT coverage, but so far they require specific IoT hardware tuned to their spectrum bands and protocols. Insurgent companies that make use of the 3GPP release 17 standard will be able to offer satellite connectivity to devices originally designed to connect only to cellular towers.
New companies also see an opportunity to offer lower, more attractive pricing. “Legacy satellite providers were charging maybe [US] $100 for a few kilobits of data, and customers are not willing to pay so much for IoT,” says Nagarajan. “There seemed to be a huge market gap.” Another company, Swarm, which is a subsidiary of SpaceX, offers low-bandwidth connectivity via proprietary devices to its tiny satellites for $5 per month.
Thanks to shared launch infrastructure and cheaper IoT-compatible modules and satellites, new firms can compete with companies that have had satellites in orbit for decades. More and more hardware and services are available on an off-the-shelf basis. “An IoT-standard module is maybe 8 or 10 euros, versus 300 euros for satellite-specific modules,” says Caudet.
In fact, Sateliot contracted the construction of its first satellite to Open Cosmos. Open Cosmos mission manager Jordi Castellví says that CubeSat subsystems and certain specialized services are now available online from suppliers including AlénSpace, CubeSatShop, EnduroSat, and Isispace, among others.
Open Cosmos
By building constellations of hundreds of satellites with IoT modules in low Earth orbit, IoT-satellite companies will be able to save money on hardware and still detect the faint signals from IoT gateways or even individual IoT sensors, such as those aboard shipping containers packed onto cargo ships at sea. They won’t move as much data as voice and broadband offerings in the works from AST SpaceMobile and Lynk Global’s larger and more complex satellites, for example, but they may be able to meet growing demand for narrowband applications.
OQ Technology has its own licensed spectrum and can operate as an independent network operator for IoT users with the latest 3GPP release—although at first most users might not have direct contact with such providers; both Sateliot and OQ Technology have partnered with existing mobile-network operators to offer a sort of global IoT roaming package. For example, while a cargo ship is in port, a customer’s onboard IoT device will transmit via the local cellular network. Farther out at sea, the device will switch to transmitting to satellites overhead. “The next step is being able to integrate cellular and satellite services,” Caudet says.
This post was updated on 28 March to clarify the planned launch schedules and coverage schedules for OQ Technology and Sateliot.
This article appears in the June 2023 print issue .
The 19-seater Dornier 228 propeller plane that took off into the cold blue January sky looked ordinary at first glance. Spinning its left propeller, however, was a 2-megawatt electric motor powered by two hydrogen fuel cells—the right side ran on a standard kerosene engine—making it the largest aircraft flown on hydrogen to date. Val Miftakhov, founder and CEO of ZeroAvia, the California startup behind the 10-minute test flight in Gloucestershire, England, called it a “historical day for sustainable aviation.”
Los Angeles–based Universal Hydrogen plans to test a 50-seat hydrogen-powered aircraft by the end of February. Both companies promise commercial flights of retrofitted turboprop aircraft by 2025. French aviation giant Airbus is going bigger with a planned 2026 demonstration flight of its iconic A380 passenger airplane, which will fly using hydrogen fuel cells and by burning hydrogen directly in an engine. And Rolls Royce is making headway on aircraft engines that burn pure hydrogen.
The aviation industry, responsible for some 2.5 percent of global carbon emissions, has committed to net-zero emissions by 2050. Getting there will require several routes, including sustainable fuels, hybrid-electric engines, and battery-electric aircraft.
Hydrogen is another potential route. Whether used to make electricity in fuel cells or burned in an engine, it combines with oxygen to emit water vapor. If green hydrogen scales up for trucks and ships, it could be a low-cost fuel without the environmental issues of batteries.
Flying on hydrogen brings storage and aircraft-certification challenges, but aviation companies are doing the groundwork now for hydrogen flight by 2035. “Hydrogen is headed off to the sky, and we’re going to take it there,” says Amanda Simpson, vice president for research and technology at Airbus Americas.
The most plentiful element, hydrogen is also the lightest—key for an industry fighting gravity—packing three times the energy of jet fuel by weight. The problem with hydrogen is its volume. For transport, it has to be stored in heavy tanks either as a compressed high-pressure gas or a cryogenic liquid.
ZeroAvia is using compressed hydrogen gas, since it is already approved for road transport. Its test airplane had two hydrogen fuel cells and tanks sitting inside the cabin, but the team is now thinking creatively about a compact system with minimal changes to aircraft design to speed up certification in the United States and Europe. The fuel cells’ added weight could reduce flying range, but “that’s not a problem, because aircraft are designed to fly much further than they’re used,” says vice president of strategy James McMicking.
The company has backing from investors that include Bill Gates and Jeff Bezos; partnerships with British Airways and United Airlines; and 1,500 preorders for its hydrogen-electric power-train system, half of which are for smaller, 400-kilometer-range 9- to 19-seaters.
By 2027, ZeroAvia plans to convert larger, 70-seater turboprop aircraft with twice the range, used widely in Europe. The company is developing 5-MW electric motors for those, and it plans to switch to more energy-dense liquid hydrogen to save space and weight. The fuel is novel for the aviation industry and could require a longer regulatory approval process, McMicking says.
Next will come a 10-MW power train for aircraft with 100 to 150 seats, “the workhorses of the industry,” he says. Those planes—think Boeing 737—are responsible for 60 percent of aviation emissions. Making a dent in those with hydrogen will require much more efficient fuel cells. ZeroAvia is working on proprietary high-temperature fuel cells for that, McMicking says, with the ability to reuse the large amounts of waste heat generated. “We have designs and a technology road map that takes us into jet-engine territory for power,” he says.
Universal Hydrogen
Universal Hydrogen, which counts Airbus, GE Aviation, and American Airlines among its strategic investors, is placing bets on liquid hydrogen. The startup, “a hydrogen supply and logistics company at our core,” wants to ensure a seamless delivery network for hydrogen aviation as it catches speed, says founder and CEO Paul Eremenko. The company sources green hydrogen, turns it into liquid, and puts it in relatively low-tech insulated aluminum tanks that it will deliver via road, rail, or ship. “We want them certified by the Federal Aviation Administration for 2025, which means they can’t be a science project,” he says.
The cost of green hydrogen is expected to be on par with kerosene by 2025, Eremenko says. But “there’s nobody out there with an incredible hydrogen-airplane solution. It’s a chicken-and-egg problem.”
To crack it, Universal Hydrogen partnered with leading fuel-cell-maker Plug Power to develop a few thousand conversion kits for regional turboprop airplanes. The kits swap the engine in its streamlined housing (also known as nacelle) for a fuel-cell stack, power electronics, and a 2-MW electric motor. While the company’s competitors use batteries as buffers during takeoff, Eremenko says Universal uses smart algorithms to manage fuel cells, so they can ramp up and respond quickly. “We are the Nespresso of hydrogen,” he says. “We buy other people’s coffee, put it into capsules, and deliver to customers. But we have to build the first coffee machine. We’re the only company incubating the chicken and egg at the same time.”
This rendering of an Airbus A380 demonstrator flight (presently slated for 2026) reveals current designs on an aircraft that’s expected to fly using fuel cells and by burning hydrogen directly in the engine. Airbus
Fuel cells have a few advantages over a large central engine. They allow manufacturers to spread out smaller propulsion motors over an aircraft, giving them more design freedom. And because there are no high-temperature moving parts, maintenance costs can be lower. For long-haul aircraft, however, the weight and complexity of high-power fuel cells makes hydrogen-combustion engines appealing.
Airbus is considering both fuel-cell and combustion propulsion for its ZEROe hydrogen aircraft system. It has partnered with German automotive fuel-cell-maker Elring Klinger and, for direct combustion engines, with CFM International, a joint venture between GE Aviation and Safran. Burning liquid hydrogen in today’s engines is still expected to require slight modifications, such as a shorter combustion chamber and better seals.
Airbus is also evaluating hybrid propulsion concepts with a hydrogen-engine-powered turbine and a hydrogen-fuel-cell-powered motor on the same shaft, says Simpson, of Airbus Americas. “Then you can optimize it so you use both propulsion systems for takeoff and climb, and then turn one off for cruising.”
The company isn’t limiting itself to simple aircraft redesign. Hydrogen tanks could be stored in a cupola on top of the plane, pods under the wings, or a large tank at the back, Simpson says. Without liquid fuel in the wings, as in traditional airplanes, she says, “you can optimize wings for aerodynamics, make them thinner or longer. Or maybe a blended-wing body, which could be very different. This opens up the opportunity to optimize aircraft for efficiency.” Certification for such new aircraft could take years, and Airbus isn’t expecting commercial flights until 2035.
Conventional aircraft made today will be around in 2050 given their 25- to 30-year life-span, says Robin Riedel, an analyst at McKinsey & Co. Sustainable fuels are the only green option for those. He says hydrogen could play a role there, through “power-to-liquid technology, where you can mix hydrogen and captured carbon dioxide to make aviation fuel.”
Even then, Riedel thinks hydrogen will likely be a small part of aviation’s sustainability solution until 2050. “By 2070, hydrogen is going to play a much bigger role,” he says. “But we have to get started on hydrogen now.” The money that Airbus and Boeing are putting into hydrogen is a small fraction of aerospace, he says, but big airlines investing in hydrogen companies or placing power-train orders “shows there is desire.”
The aviation industry has to clean up if it is to grow, Simpson says. Biofuels are a stepping-stone, because they reduce only carbon emissions, not other harmful ones. “If we’re going to move towards clean aviation, we have to rethink everything from scratch and that’s what ZEROe is doing,” she says. “This is an opportunity to make not an evolutionary change but a truly revolutionary one.”
This article appears in the April 2023 print issue as “Hydrogen-Powered Flight Cleared for Takeoff.”
Are you looking for a way to create content that is both effective and efficient? If so, then you should consider using an AI content generator. AI content generators are a great way to create content that is both engaging and relevant to your audience.
There are a number of different AI content generator tools available on the market, and it can be difficult to know which one is right for you. To help you make the best decision, we have compiled a list of the top 10 AI content generator tools that you should use in 2022.
So, without further ado, let’s get started!
Boss Mode: $99/Month
The utility of this service can be used for short-term or format business purposes such as product descriptions, website copy, market copy, and sales reports.
Free Trial – 7 days with 24/7 email support and 100 runs per day.
Pro Plan: $49 and yearly, it will cost you $420 i.e. $35 per month.
Wait! I've got a pretty sweet deal for you. Sign up through the link below, and you'll get (7,000 Free Words Plus 40% OFF) if you upgrade to the paid plan within four days.
Claim Your 7,000 Free Words With This Special Link - No Credit Card Required
Just like Outranking, Frase is an AI that helps you research, create and optimize your content to make it high quality within seconds. Frase works on SEO optimization where the content is made to the liking of search engines by optimizing keywords and keywords.
Solo Plan: $14.99/Month and $12/Month if billed yearly with 4 Document Credits for 1 user seat.
Basic Plan: $44.99/month and $39.99/month if billed yearly with 30 Document Credits for 1 user seat.
Team Plan: $114.99/month and $99.99/month if billed yearly for unlimited document credits for 3 users.
*SEO Add-ons and other premium features for $35/month irrespective of the plan.
Article Forge is another content generator that operates quite differently from the others on this list. Unlike Jasper.ai, which requires you to provide a brief and some information on what you want it to write this tool only asks for a keyword. From there, it’ll generate a complete article for you.
What’s excellent about Article Forge is they provide a 30-day money-back guarantee. You can choose between a monthly or yearly subscription. Unfortunately, they offer a free trial and no free plan:
Basic Plan: $27/Month
This plan allows users to produce up to 25k words each month. This is excellent for smaller blogs or those who are just starting.
Standard Plan: $57/month)
Unlimited Plan: $117/month
It’s important to note that Article Forge guarantees that all content generated through the platform passes Copyscape.
Rytr.me is a free AI content generator perfect for small businesses, bloggers, and students. The software is easy to use and can generate SEO-friendly blog posts, articles, and school papers in minutes.
Cons
Pricing
Rytr offers a free plan that comes with limited features. It covers up to 5,000 characters generated each month and has access to the built-in plagiarism checker. If you want to use all the features of the software, you can purchase one of the following plans:
Saver Plan: $9/month, $90/year
Writesonic is a free, easy-to-use AI content generator. The software is designed to help you create copy for marketing content, websites, and blogs. It's also helpful for small businesses or solopreneurs who need to produce content on a budget.
Writesonic is free with limited features. The free plan is more like a free trial, providing ten credits. After that, you’d need to upgrade to a paid plan. Here are your options:
Short-form: $15/month
Features:
Long-Form: $19/month
CopySmith is an AI content generator that can be used to create personal and professional documents, blogs, and presentations. It offers a wide range of features including the ability to easily create documents and presentations.
CopySmith also has several templates that you can use to get started quickly.
CopySmith offers a free trial with no credit card required. After the free trial, the paid plans are as follows:
Starter Plan: $19/month
Hypotenuse.ai is a free online tool that can help you create AI content. It's great for beginners because it allows you to create videos, articles, and infographics with ease. The software has a simple and easy-to-use interface that makes it perfect for new people looking for AI content generation.
Special Features
Hypotenuse doesn’t offer a free plan. Instead, it offers a free trial period where you can take the software for a run before deciding whether it’s the right choice for you or not. Other than that, here are its paid options:
Starter Plan: $29/month
Growth Plan: $59/month
Enterprise – pricing is custom, so don’t hesitate to contact the company for more information.
Kafkai comes with a free trial to help you understand whether it’s the right choice for you or not. Additionally, you can also take a look at its paid plans:
Writer Plan: $29/month Create 100 articles per month. $0.29/article
Newsroom Plan $49/month – Generate 250 articles a month at $0.20 per article.
Printing Press Plan: $129 /month Create up to 1000 articles a month at roughly $0.13/article.
Industrial Printer Plan: ($199 a month) – Generate 2500 articles each month for $0.08/article.
Peppertype.ai is an online AI content generator that’s easy to use and best for small business owners looking for a powerful copy and content writing tool to help them craft and generate various content for many purposes.
Unfortunately, Peppertype.ai isn’t free. However, it does have a free trial to try out the software before deciding whether it’s the right choice for you. Here are its paid plans:
personal Plan:$35/Month
Team Plan: $199/month
Enterprise – pricing is custom, so please contact the company for more information.
It is no longer a secret that humans are getting overwhelmed with the daily task of creating content. Our lives are busy, and the process of writing blog posts, video scripts, or other types of content is not our day job. In comparison, AI writers are not only cheaper to hire, but also perform tasks at a high level of excellence. This article explores 10 writing tools that used AI to create better content choose the one which meets your requirements and budget but in my opinion Jasper ai is one of the best tools to use to make high-quality content.
If you have any questions ask in the comments section
Note: Don't post links in your comments
Note: This article contains affiliate links which means we make a small commission if you buy any premium plan from our link.
![]() |
Image by vectorjuice on Freepik |
There are lots of questions floating around about how affiliate marketing works, what to do and what not to do when it comes to setting up a business. With so much uncertainty surrounding both personal and business aspects of affiliate marketing. In this post, we will answer the most frequently asked question about affiliate marketing
Affiliate marketing is a way to make money by promoting the products and services of other people and companies. You don't need to create your product or service, just promote existing ones. That's why it's so easy to get started with affiliate marketing. You can even get started with no budget at all!
An affiliate program is a package of information you create for your product, which is then made available to potential publishers. The program will typically include details about the product and its retail value, commission levels, and promotional materials. Many affiliate programs are managed via an affiliate network like ShareASale, which acts as a platform to connect publishers and advertisers, but it is also possible to offer your program directly.
Affiliate networks connect publishers to advertisers. Affiliate networks make money by charging fees to the merchants who advertise with them; these merchants are known as advertisers. The percentage of each sale that the advertiser pays is negotiated between the merchant and the affiliate network.
Dropshipping is a method of selling that allows you to run an online store without having to stock products. You advertise the products as if you owned them, but when someone makes an order, you create a duplicate order with the distributor at a reduced price. The distributor takes care of the post and packaging on your behalf. As affiliate marketing is based on referrals and this type of drop shipping requires no investment in inventory when a customer buys through the affiliate link, no money exchanges hands.
Performance marketing is a method of marketing that pays for performance, like when a sale is made or an ad is clicked This can include methods like PPC (pay-per-click) or display advertising. Affiliate marketing is one form of performance marketing where commissions are paid out to affiliates on a performance basis when they click on their affiliate link and make a purchase or action.
Smartphones are essentially miniature computers, so publishers can display the same websites and offers that are available on a PC. But mobiles also offer specific tools not available on computers, and these can be used to good effect for publishers. Publishers can optimize their ads for mobile users by making them easy to access by this audience. Publishers can also make good use of text and instant messaging to promote their offers. As the mobile market is predicted to make up 80% of traffic in the future, publishers who do not promote on mobile devices are missing out on a big opportunity.
The best way to find affiliate publishers is on reputable networks like ShareASale Cj(Commission Junction), Awin, and Impact radius. These networks have a strict application process and compliance checks, which means that all affiliates are trustworthy.
An affiliate disclosure statement discloses to the reader that there may be affiliate links on a website, for which a commission may be paid to the publisher if visitors follow these links and make purchases.
Publishers promote their programs through a variety of means, including blogs, websites, email marketing, and pay-per-click ads. Social media has a huge interactive audience, making this platform a good source of potential traffic.
A super affiliate is an affiliate partner who consistently drives a large majority of sales from any program they promote, compared to other affiliate partners involved in that program. Affiliates make a lot of money from affiliate marketing Pat Flynn earned more than $50000 in 2013 from affiliate marketing.
Publishers can be identified by their publisher ID, which is used in tracking cookies to determine which publishers generate sales. The activity is then viewed within a network's dashboard.
Because the Internet is so widespread, affiliate programs can be promoted in any country. Affiliate strategies that are set internationally need to be tailored to the language of the targeted country.
Affiliate marketing can help you grow your business in the following ways:
One of the best ways to work with qualified affiliates is to hire an affiliate marketing agency that works with all the networks. Affiliates are carefully selected and go through a rigorous application process to be included in the network.
Affiliate marketing is generally associated with websites, but there are other ways to promote your affiliate links, including:
To build your affiliate marketing business, you don't have to invest money in the beginning. You can sign up for free with any affiliate network and start promoting their brands right away.
Commission rates are typically based on a percentage of the total sale and in some cases can also be a flat fee for each transaction. The rates are set by the merchant.
Who manages your affiliate program?
Some merchants run their affiliate programs internally, while others choose to contract out management to a network or an external agency.
Cookies are small pieces of data that work with web browsers to store information such as user preferences, login or registration data, and shopping cart contents. When someone clicks on your affiliate link, a cookie is placed on the user's computer or mobile device. That cookie is used to remember the link or ad that the visitor clicked on. Even if the user leaves your site and comes back a week later to make a purchase, you will still get credit for the sale and receive a commission it depends on the site cookies duration
The merchant determines the duration of a cookie, also known as its “cookie life.” The most common length for an affiliate program is 30 days. If someone clicks on your affiliate link, you’ll be paid a commission if they purchase within 30 days of the click.
Some examples can be:
There’s no excuse not to try this website — it’s free and easy to use!
Visit Exploding Topics From Here
Headline Studio allows you to create catchy headlines for your content. After writing a title there is data on how often people view articles with similar titles and why they are involved with them.
This is a valuable tool when creating new blog posts because it generates catchy headlines for your blog post to catch a reader’s attention.
Visit Headline Studio From Here
Answer The public is an excellent tool for content creators. It gives you insight into what people are asking on social media sites and communities and lets you guess about topics that matter to your audience. Answer the public allows you to enter a keyword or topic related to your niche and it will show results with popular questions and keywords related to your topic. It's an amazing way to get insights into what people are searching online and allows you to identify topics driven by new blog posts or social media content on platforms like Facebook, Instagram, Youtube, and Twitter as well as the types of questions they ask and also want answers.
Visit Answer The Public From Here
With this tool, content creators can quickly and easily check the ranking of their websites and those of other competitors. This tool allows you to see how your website compares to others in different categories, including:
Surfer Seo is free and the interface is very friendly. It's a great tool for anyone who wants to do quick competitor research or check their site's rankings at any time.
Canva is a free graphic design platform that makes it easy to create invitations, business cards, mobile videos, Instagram posts, Instagram stories, flyers, and more with professionally designed templates. You can even upload your photos and drag and drop them into Canva templates. It's like having a basic version of Photoshop. You can also remove background from images with one click.
Canva offers thousands of free, professionally designed templates that can be customized with just a few clicks. Simply upload your photos to Canva, drag them into the template of your choice, and save the file to your computer.
It is free to use for basic use but if you want access to different fonts or more features, then you need to buy a premium plan.
Facebook Audience Insights is a powerful tool for content creators when researching their target market. This can help you understand the demographics, interests, and behaviors of your target audience. This information helps determine the direction of your content so that it resonates with them. The most important tools to consider in Facebook Audience Insights are Demographics and Behavior. These two sections provide you with valuable information about your target market, such as their age and from where they belong, how much time they spend on social media per day, what devices they use to access it, etc.
There is another section of Facebook Audits that is very helpful. This will let you know the interests, hobbies, and activities that people in your target market are most interested in. You can use this information to create content for them about things they will be about as opposed to topics they may not be so keen on.
Visit Facebook Audience Insights From Here
Pexels is a warehouse for any content creator with millions of free royalty images who wants to find high-quality images that can be used freely without having to worry about permissions or licensing so you are free to use the photos in your content and also there is no watermark on photos
The only cons are that some photos contain people, and Pexels doesn't allow you to remove people from photos. Search your keyword and download as many as you want!
So there you have it. We hope that these specially curated websites will come in handy for content creators and small businesses alike. If you've got a site that should be on this list, let us know! And if you're looking for more content creator resources, then let us know in the comments section below
A raft of states are looking to restrict property purchases by citizens of U.S. adversaries like China and Iran. Democrats in Washington are pushing back.
The post U.S. Lawmakers Seek to Preempt State-Level Bans on Foreigners Buying Property appeared first on The Intercept.
It’s been a frenetic six months since OpenAI introduced its large language model ChatGPT to the world at the end of last year. Every day since then, I’ve had at least one conversation about the consequences of the global AI experiment we find ourselves conducting. We aren’t ready for this, and by we, I mean everyone–individuals, institutions, governments, and even the corporations deploying the technology today.
The sentiment that we’re moving too fast for our own good is reflected in an open letter calling for a pause in AI research, which was posted by the Future of Life Institute and signed by many AI luminaries, including some prominent IEEE members. As News Manager Margo Anderson reports online in The Institute, signatories include Senior Member and IEEE’s AI Ethics Maestro Eleanor “Nell” Watson and IEEE Fellow and chief scientist of software engineering at IBM, Grady Booch. He told Anderson, “These models are being unleashed into the wild by corporations who offer no transparency as to their corpus, their architecture, their guardrails, or the policies for handling data from users. My experience and my professional ethics tell me I must take a stand….”
IEEE CAI 2023 Conference on Artificial Intelligence, June 5-6, Santa Clara, Calif.
AI GET Program for AI Ethics and Governance Standards
IEEE P2863 Organizational Governance of Artificial Intelligence Working Group
IEEE Awareness Module on AI Ethics
Recent Advances in the Assessment and Certification of AI Ethics
But research and deployment haven’t paused, and AI is becoming essential across a range of domains. For instance, Google has applied deep-reinforcement learning to optimize placement of logic and memory on chips, as Senior Editor Samuel K. Moore reports in the June issue’s lead news story “Ending an Ugly Chapter in Chip Design.” Deep in the June feature well, the cofounders of KoBold Metals explain how they use machine-learning models to search for minerals needed for electric-vehicle batteries in “This AI Hunts for Hidden Hoards of Battery Minerals.”
Somewhere between the proposed pause and headlong adoption of AI lie the social, economic, and political challenges of creating the regulations that tech CEOs like OpenAI’s Sam Altman and Google’s Sundar Pichai have asked governments to create.
“These models are being unleashed into the wild by corporations who offer no transparency as to their corpus, their architecture, their guardrails, or the policies for handling data from users.”
To help make sense of the current AI moment, I talked with IEEE Spectrum senior editor Eliza Strickland, who recently won a Jesse H. Neal Award for best range of work by an author for her biomedical, geoengineering, and AI coverage. Trustworthiness, we agreed, is probably the most pressing near-term concern. Addressing the provenance of information and its traceability is key. Otherwise people may be swamped by so much bad information that the fragile consensus among humans about what is and isn’t real totally breaks down.
The European Union is ahead of the rest of the world with its proposed Artificial Intelligence Act. It assigns AI applications to three risk categories: Those that create unacceptable risk would be banned, high-risk applications would be tightly regulated, and applications deemed to pose few if any risks would be left unregulated.
The EU’s draft AI Act touches on traceability and deepfakes, but it doesn’t specifically address generative AI–deep-learning models that can produce high-quality text, images, or other content based on its training data. However, a recent article in The New Yorker by the computer scientist Jaron Lanier directly takes on provenance and traceability in generative AI systems.
Lanier views generative AI as a social collaboration that mashes up work done by humans. He has helped develop a concept dubbed “data dignity,” which loosely translates to labeling these systems’ products as machine generated based on data sources that can be traced back to humans, who should be credited with their contributions. “In some versions of the idea,” Lanier writes, “people could get paid for what they create, even when it is filtered and recombined through big models, and tech hubs would earn fees for facilitating things that people want to do.”
That’s an idea worth exploring right now. Unfortunately, we can’t prompt ChatGPT to spit out a global regulatory regime to guide how we should integrate AI into our lives. Regulations ultimately apply to the humans currently in charge, and only we can ensure a safe and prosperous future for people and our machines.
A group of researchers from NASA, MIT, and other institutions have achieved the fastest space-to-ground laser-communication link yet, doubling the record they set last year. With data rates of 200 gigabits per second, a satellite could transmit more than 2 terabytes of data—roughly as much as 1,000 high-definition movies—in a single 5-minute pass over a ground station.
“The implications are far-reaching because, put simply, more data means more discoveries,” says Jason Mitchell, an aerospace engineer at NASA’s Space Communications and Navigation program.
The new communications link was made possible with the TeraByte InfraRed Delivery (TBIRD) system orbiting about 530 kilometers above Earth’s surface. Launched into space last May, TBIRD achieved downlink rates of up to 100 Gb/s with a ground-based receiver in California by last June. This was 100 times as fast as the quickest Internet speeds in most cities, and more than 1,000 times as fast as radio links traditionally used for communications with satellites.
The fastest data networks on Earth typically rely on laser communications over fiber optics. However, a high-speed laser-based Internet does not exist yet for satellites. Instead, space agencies and commercial satellite operators most commonly use radio to communicate with objects in space. The infrared light that laser communications can employ has a much higher frequency than radio waves, enabling much higher data rates.
“There are satellites currently in orbit limited by the amount of data they are able to downlink, and this trend will only increase as more capable satellites are launched,” says Kat Riesing, an aerospace engineer and a staff member at MIT Lincoln Laboratory on the TBIRD team. “Even a hyperspectral imager—HISUI on the International Space Station—has to send data back to Earth via storage drives on cargo ships due to limitations on downlink rates. TBIRD is a big enabler for missions that collect important data on Earth’s climate and resources, as well as astrophysics applications such as black hole imaging.”
MIT Lincoln Laboratory conceived TBIRD in 2014 as a low-cost, high-speed way to access data on spacecraft. A key way it reduced expenses was by using commercial, off-the-shelf components originally developed for terrestrial use. These include high-rate optical modems developed for fiber telecommunications and high-speed large-volume storage to hold data, Riesing says.
Located onboard NASA’s Pathfinder Technology Demonstrator 3 (PTD-3) satellite, TBIRD was carried into orbit on SpaceX’s Transporter-5 rideshare mission from Cape Canaveral Space Force Station in Florida on 25 May 2022. The PTD-3 satellite is a roughly 12-kilogram CubeSat about the size of two stacked cereal boxes, and its TBIRD payload is no larger than the average tissue box. “Industry’s drive to small, low-power, high-data-rate optical transceivers enabled us to achieve a compact form factor suitable even for small satellites,” Mitchell says.
“There are satellites currently in orbit limited by the amount of data they are able to downlink, and this trend will only increase as more-capable satellites are launched.” —Kat Riesing, aerospace engineer, MIT Lincoln Laboratory
The development of TBIRD faced a number of challenges. To start with, terrestrial components are not designed to survive the rigors of launching to and operating in space. For example, during a thermal test simulating the extreme temperatures the devices might face in space, the fibers in the optical signal amplifier melted.
The problem was that, when used as originally intended, the atmosphere could help cool the amplifier through convection. When tested in a vacuum, simulating space, the heat that the amplifier generated was trapped. To solve the issue, the researchers worked with the amplifier’s vendor to modify it so that it released heat through conduction instead.
In addition, laser beams from space to Earth can experience distortion from atmospheric effects and weather conditions. This can cause power loss, and in turn data loss, for the beams.
To compensate, the scientists developed their own version of automatic repeat request (ARQ), a protocol for controlling errors in data transmission over a communications link. In this arrangement, the ground terminal uses a low-rate uplink signal to let the satellite know that it has to retransmit any block of data, or frame, that has been lost or damaged. The new protocol lets the ground station tell the satellite which frames it received correctly, so the satellite knows which ones to retransmit and not waste time sending data it doesn’t have to.
Another challenge the scientists faced stemmed from how lasers form in much narrower beams than radio transmissions. For successful data transmission, these beams must be aimed precisely at their receivers. This is often accomplished by mounting the laser on a gimbal. Due to TBIRD’s small size, however, it instead maneuvers the CubeSat carrying it to point it at the ground, using any error signals it receives to correct the satellite’s orientation. This gimbal-less strategy also helped further shrink TBIRD, making it cheaper to launch.
TBIRD’s architecture can support multiple channels through wavelength separation to enable higher data rates, Riesing says. This is how TBIRD accomplished a 200-Gb/s downlink on 28 April—by using two 100-Gb/s channels, she explains. “This can scale further on a future mission if the link is designed to support it,” Riesing notes.
“Put simply, more data means more discoveries.” —Jason Mitchell, aerospace engineer, NASA
The research team’s next step is to explore where to apply this technology in upcoming missions. “This technology is particularly useful for science missions where collecting a lot of data can provide significant benefits,” Riesing says. “One mission concept that is enabled by this is the Event Horizon Explorer mission, which will extend the exciting work of the Event Horizon Telescope in imaging black holes with even higher resolution.”
The scientists also want to explore how to extend this technology to different scenarios, such as geostationary orbit, Riesing says. Moreover, Mitchell says, they are looking at ways to push TBIRD’s capabilities as far away as the moon, in order to support future missions there. The rates under consideration are in the 1- to 5-Gb/s range, which “may not seem like much of an improvement, but remember the moon is roughly 400,000 km away from Earth, which is quite a long distance to cover,” Mitchell says.
The new technology may also find use in high-speed atmospheric data links on the ground. “For example, from building to building, or across inhospitable terrain, such as from mountaintop to mountaintop, where the cost of laying fiber systems could be exorbitant,” Riesing says.
I love plants. I am not great with plants. I have accepted this fact and have therefore entrusted the lives of all of the plants in my care to robots. These aren’t fancy robots: They’re automated hydroponic systems that take care of water and nutrients and (fake) sunlight, and they do an amazing job. My plants are almost certainly happier this way, and therefore I don’t have to feel guilty about my hands-off approach. This is especially true that there is now data from roboticists at the University of California, Berkeley, to back up the assertion that robotic gardeners can do just as good a job as even the best human gardeners can. In fact, in some metrics, the robots can do even better.
In 1950, Alan Turing considered the question “Can Machines Think?” and proposed a test based on comparing human versus machine ability to answer questions. In this paper, we consider the question “Can Machines Garden?” based on comparing human versus machine ability to tend a real polyculture garden.
UC Berkeley has a long history of robotic gardens, stretching back to at least the early ’90s. And (as I have experienced) you can totally tend a garden with a robot. But the real question is this: Can you usefully tend a garden with a robot in a way that is as effective as a human tending that same garden? Time for some SCIENCE!
AlphaGarden is a combination of a commercial gantry robot farming system and UC Berkeley’s AlphaGardenSim, which tells the robot what to do to maximize plant health and growth. The system includes a high-resolution camera and soil moisture sensors for monitoring plant growth, and everything is (mostly) completely automated, from seed planting to drip irrigation to pruning. The garden itself is somewhat complicated, since it’s a polyculture garden (meaning of different plants). Polyculture farming mimics how plants grow in nature; its benefits include pest resilience, decreased fertilization needs, and improved soil health. But since different plants have different needs and grow in different ways at different rates, polyculture farming is more labor-intensive than monoculture, which is how most large-scale farming happens.
To test AlphaGarden’s performance, the UC Berkeley researchers planted two side-by-side farming plots with the same seeds at the same time. There were 32 plants in total, including kale, borage, Swiss chard, mustard greens, turnips, arugula, green lettuce, cilantro, and red lettuce. Over the course of two months, AlphaGarden tended its plot full time, while professional horticulturalists tended the plot next door. Then, the experiment was repeated, except that AlphaGarden was allowed to stagger the seed planting to give slower-growing plants a head start. A human did have to help the robot out with pruning from time to time, but just to follow the robot’s directions when the pruning tool couldn’t quite do what the robot wanted it to do.
The robot and the professional human both achieved similar results in their garden plots.UC Berkeley
The results of these tests showed that the robot was able to keep up with the professional human in terms of both overall plant diversity and coverage. In other words, stuff grew just as well when tended by the robot as it did when tended by a professional human. The biggest difference is that the robot managed to keep up while using 44 percent less water: several hundred liters less over two months.
“AlphaGarden has thus passed the Turing test for gardening,” the researchers say. They also say that “much remains to be done,” mostly by improving the AlphaGardenSim plant-growth simulator to further optimize water use, although there are other variables to explore like artificial light sources. The future here is a little uncertain, though—the hardware is pretty expensive, and human labor is (relatively) cheap. Expert human knowledge is not cheap, of course. But for those of us who are very much nonexperts, I could easily imagine mounting some cameras above my garden and installing some sensors and then just following the orders of the simulator about where and when and how much to water and prune. I’m always happy to donate my labor to a robot that knows what it’s doing better than I do.
“Can Machines Garden? Systematically Comparing the AlphaGarden vs. Professional Horticulturalists,” by Simeon Adebola, Rishi Parikh, Mark Presten, Satvik Sharma, Shrey Aeron, Ananth Rao, Sandeep Mukherjee, Tomson Qu, Christina Wistrom, Eugen Solowjow, and Ken Goldberg from UC Berkeley, will be presented at ICRA 2023 in London.
The war between Russia and Ukraine is making a lot of high-tech military systems look like so many gold-plated irrelevancies. That’s why both sides are relying increasingly on low-tech alternatives—dumb artillery shells instead of pricey missiles, and drones instead of fighter aircraft.
“This war is a war of drones, they are the super weapon here,” Anton Gerashchenko, an adviser to Ukraine’s minister of internal affairs, told Newsweek earlier this year.
In early May, Russia attributed explosions at the Kremlin to drones sent by Ukraine for the purpose of assassinating Vladimir Putin, the Russian leader. Ukraine denied the allegation. True, the mission to Moscow was ineffectual, but it is amazing that it could be managed at all.
Like fighter planes, military drones started cheap, then got expensive. Unlike the fighters, though, they got cheap again.
Drones fly slower than an F-35, carry a smaller payload, beckon ground fire, and last mere days before being shot out of the skies. But for the most part, the price is right: China’s DJI Mavic 3, used by both Russia and Ukraine for surveillance and for delivering bombs, goes for around US $2,000. You can get 55,000 of them for the price of a single F-35. Also, they’re much easier to maintain: When they break, you throw them out, and there’s no pilot to be paraded through the streets of the enemy capital.
Smoke clouds rise on a flat-screen monitor above a struck target, as a Ukrainian serviceman of the Adam tactical group operates a drone to spot Russian positions near the city of Bakhmut, Donetsk region, on 16 April 2023, amid the Russian invasion of Ukraine. Sergey Shestak/AFP/Getty Images
You can do a lot with 55,000 drones. Shovel them at the foe and one in five may make it through. Yoke them together and send them flocking like a murmuration of starlings, and they will overwhelm antiaircraft defenses. Even individually they can be formidable. One effective tactic is to have a drone “loiter” near a point where targets are expected to emerge, then dash in and drop a small bomb. Videos posted on social media purport to show Ukrainian remote operators dropping grenades on Russian troops or through the hatches of Russian armored vehicles. A drone gives a lot of bang for the buck, as utterly new weapons often do.
Over time, as a weapons system provokes countermeasures, their designers respond with improvements, and the gold-plating accumulates.
In 1938, a single British Spitfire cost £9,500 to produce, equivalent to about $1 million today. In the early 1950s the United States F-86 Sabre averaged about $250,000 apiece, about $3 million now. The F-35, today’s top-of-the-line U.S. fighter, starts at $110 million. Behold the modern-day fighter plane: the hypertrophied product of the longest arms race since the days of the dreadnought.
“In the year 2054, the entire defense budget will purchase just one aircraft,” wrote Norman Augustine, formerly Under Secretary of the Army, back in 1984. “This aircraft will have to be shared by the Air Force and Navy 3 1/2 days each per week except for leap year, when it will be made available to the Marines for the extra day.”
Like fighter planes, military drones started cheap, then got expensive. Unlike the fighters, though, they got cheap again.
“Sophisticated tech is more readily available, and with AI advances and the potential for swarms, there’s even more emphasis on quantity.”
—Kelly A. Greico, Stimson Center
Back in 1981, Israel sent modest contraptions sporting surveillance cameras in its war against Syria, to some effect. The U.S. military took hold of the concept, and in its hands, those simple drones morphed into Predators and Reapers, bomber-size machines that flew missions in Iraq and Afghanistan. Each cost millions of dollars (if not tens of millions). But a technologically powerful country needn’t count the cost; the United States certainly didn’t.
“We are a country of technologists, we love technological solutions,” says Kelly A. Grieco, a strategic analyst at the Stimson Center, a think tank in Washington, D.C. “It starts with the Cold War: Looking at the Soviet Union, their advantages were in numbers and in their close approach to Germany, the famous Fulda Gap. So we wanted technology to offset the Soviet numerical advantage.”
A lot of the cost in an F-35 can be traced to the stealth technology that lets it elude even very sophisticated radar. The dreadnoughts of old needed guns of ever-greater range—enough finally to shoot beyond the horizon—so that the other side couldn’t hold them at arm’s length and pepper them with shells the size of compact cars.
Arms races tend to shift when a long peacetime buildup finally ends, as it has in Ukraine.
“The character of war has moved back toward quantity mattering,” Grieco says. “Sophisticated tech is more readily available, and with AI advances and the potential for swarms, there’s even more emphasis on quantity.”
A recent research paper she wrote with U.S. Air Force Col. Maximilian K. Bremer notes that China has showcased such capabilities, “including a swarm test of 48 loitering munitions loaded with high-explosive warheads and launched from a truck and helicopter.”
What makes these things readily available—as the nuclear and stealth technologies were not—is the Fourth Industrial Revolution: 3D printing, easy wireless connections, AI, and the big data that AI consumes. These things are all out there, on the open market.
“You can’t gain the same advantage from simply possessing the technology,” Grieco says. “What will become more important will be how you use it.”
One example of how experience has changed use comes from the early days of the war in Ukraine. That country scored early successes with the Baykar Bayraktar TB2, a Turkish drone priced at an estimated at $5 million each, about one-sixth as much as the United States’ Reaper, which it broadly resembles. That’s not cheap, except by U.S. standards.
Right now the militaries of the world are working on ways to shoot down small drones with directed-energy weapons based on lasers or microwaves.
“The Bayraktar was extremely effective at first, but after Russia got its act together with air defense, they were not as effective by so large a margin,” says Zach Kallenborn, a military consultant associated with the Center for Strategic and International Studies, a think tank in Washington, D.C. That, he says, led both sides to move to masses of cheaper drones that get shot down so often they have a working life of maybe three to four days. So what? It’s a good cost-benefit ratio for drones as cheap as Ukraine’s DJIs and for Russia’s new equivalent, the Shahed-136, supplied by Iran.
Ukraine has also resorted to homemade drones as an alternative to long-range jet fighters and missiles, which Western donors have so far refused to provide. It recently launched such drones from its own territory to targets hundreds of kilometers inside Russia; Ukrainian officials said that they were working on a model that would fly about 1,000 kilometers.
Every military power is now staring at these numbers, not least the United States and China. If those two powers ever clash, it would likely be over Taiwan, which China says it will one day absorb and the United States says it will defend. Such a far-flung maritime arena would be very different from the close-in land war going on now in Eastern Europe. The current war may therefore not be a good guide to future ones.
“I don’t buy that drones will transform all of warfare. But even if they do, you’d need to get them all the way to Taiwan. And to do that you’d need [aircraft] carriers,” says Kallenborn. “And you’d need a way to communicate with drones. Relays are possible, but now satellites are key, so China’s first move might be to knock out satellites. There’s reason to doubt they would, though, because they need satellites, too.”
In every arms race there is always another step to take. Right now the militaries of the world are working on ways to shoot down small drones with directed-energy weapons based on lasers or microwaves. The marginal cost of a shot would be low—once you’ve amortized the expense of developing, making, and deploying such weapons systems.
Should such antidrone measures succeed, then succeeding generations of drones will be hardened against them. With gold plating.
Quantum computing is a devilishly complex technology, with many technical hurdles impacting its development. Of these challenges two critical issues stand out: miniaturization and qubit quality.
IBM has adopted the superconducting qubit road map of reaching a 1,121-qubit processor by 2023, leading to the expectation that 1,000 qubits with today’s qubit form factor is feasible. However, current approaches will require very large chips (50 millimeters on a side, or larger) at the scale of small wafers, or the use of chiplets on multichip modules. While this approach will work, the aim is to attain a better path toward scalability.
Now researchers at MIT have been able to both reduce the size of the qubits and done so in a way that reduces the interference that occurs between neighboring qubits. The MIT researchers have increased the number of superconducting qubits that can be added onto a device by a factor of 100.
“We are addressing both qubit miniaturization and quality,” said William Oliver, the director for the Center for Quantum Engineering at MIT. “Unlike conventional transistor scaling, where only the number really matters, for qubits, large numbers are not sufficient, they must also be high-performance. Sacrificing performance for qubit number is not a useful trade in quantum computing. They must go hand in hand.”
The key to this big increase in qubit density and reduction of interference comes down to the use of two-dimensional materials, in particular the 2D insulator hexagonal boron nitride (hBN). The MIT researchers demonstrated that a few atomic monolayers of hBN can be stacked to form the insulator in the capacitors of a superconducting qubit.
Just like other capacitors, the capacitors in these superconducting circuits take the form of a sandwich in which an insulator material is sandwiched between two metal plates. The big difference for these capacitors is that the superconducting circuits can operate only at extremely low temperatures—less than 0.02 degrees above absolute zero (-273.15 °C).
Superconducting qubits are measured at temperatures as low as 20 millikelvin in a dilution refrigerator.Nathan Fiske/MIT
In that environment, insulating materials that are available for the job, such as PE-CVD silicon oxide or silicon nitride, have quite a few defects that are too lossy for quantum computing applications. To get around these material shortcomings, most superconducting circuits use what are called coplanar capacitors. In these capacitors, the plates are positioned laterally to one another, rather than on top of one another.
As a result, the intrinsic silicon substrate below the plates and to a smaller degree the vacuum above the plates serve as the capacitor dielectric. Intrinsic silicon is chemically pure and therefore has few defects, and the large size dilutes the electric field at the plate interfaces, all of which leads to a low-loss capacitor. The lateral size of each plate in this open-face design ends up being quite large (typically 100 by 100 micrometers) in order to achieve the required capacitance.
In an effort to move away from the large lateral configuration, the MIT researchers embarked on a search for an insulator that has very few defects and is compatible with superconducting capacitor plates.
“We chose to study hBN because it is the most widely used insulator in 2D material research due to its cleanliness and chemical inertness,” said colead author Joel Wang, a research scientist in the Engineering Quantum Systems group of the MIT Research Laboratory for Electronics.
On either side of the hBN, the MIT researchers used the 2D superconducting material, niobium diselenide. One of the trickiest aspects of fabricating the capacitors was working with the niobium diselenide, which oxidizes in seconds when exposed to air, according to Wang. This necessitates that the assembly of the capacitor occur in a glove box filled with argon gas.
While this would seemingly complicate the scaling up of the production of these capacitors, Wang doesn’t regard this as a limiting factor.
“What determines the quality factor of the capacitor are the two interfaces between the two materials,” said Wang. “Once the sandwich is made, the two interfaces are “sealed” and we don’t see any noticeable degradation over time when exposed to the atmosphere.”
This lack of degradation is because around 90 percent of the electric field is contained within the sandwich structure, so the oxidation of the outer surface of the niobium diselenide does not play a significant role anymore. This ultimately makes the capacitor footprint much smaller, and it accounts for the reduction in cross talk between the neighboring qubits.
“The main challenge for scaling up the fabrication will be the wafer-scale growth of hBN and 2D superconductors like [niobium diselenide], and how one can do wafer-scale stacking of these films,” added Wang.
Wang believes that this research has shown 2D hBN to be a good insulator candidate for superconducting qubits. He says that the groundwork the MIT team has done will serve as a road map for using other hybrid 2D materials to build superconducting circuits.
Part of a brutal crackdown on dissent against the police training facility, the SWAT raid and charges against the protest bail fund are unprecedented.
The post Atlanta Police Arrest Organizers of Bail Fund for Cop City Protesters appeared first on The Intercept.
Stephen Cass: Welcome to Fixing the Future, an IEEE Spectrum podcast. This episode is brought to you by IEEE Xplore, the digital library with over 6 million technical documents and free search. I’m senior editor Stephen Cass, and today I’m talking with a former Spectrum editor, Sally Adee, about her new book, We Are Electric: The New Science of Our Body’s Electrome. Sally, welcome to the show.
Sally Adee: Hi, Stephen. Thank you so much for having me.
Cass: It’s great to see you again, but before we get into exactly what you mean by the body’s electrome and so on, I see that in researching this book, you actually got yourself zapped quite a bit in a number of different ways. So I guess my first question is: are you okay?
Adee: I mean, as okay as I can imagine being. Unfortunately, there’s no experimental sort of condition and control condition. I can’t see the self I would have been in the multiverse version of myself that didn’t zap themselves. So I think I’m saying yes.
Cass: The first question I have then is what is an electrome?
Adee: So the electrome is this word, I think, that’s been burbling around the bioelectricity community for a number of years. The first time it was committed to print is a 2016 paper by this guy called Arnold De Loof, a researcher out in Europe. But before that, a number of the researchers I spoke to for this book told me that they had started to see it in papers that they were reviewing. And I think it wasn’t sort of defined consistently always because there’s this idea that seems to be sort of bubbling to the top, bubbling to the surface, that there are these electrical properties that the body has, and they’re not just epiphenomena, and they’re not just in the nervous system. They’re not just action potentials, but that there are electrical properties in every one of our cells, but also at the organ level, potentially at the sort of entire system level, that people are trying to figure out what they actually do.
And just as action potentials aren’t just epiphenomena, but actually our control mechanisms, they’re looking at how these electrical properties work in the rest of the body, like in the cells, membrane voltages and skin cells, for example, are involved in wound healing. And there’s this idea that maybe these are an epigenetic variable that we haven’t been able to conscript yet. And there’s such promise in it, but a lot of the research, the problem is that a lot of the research is being done across really far-flung scientific communities, some in developmental biology, some of it in oncology, a lot of it in neuroscience, obviously. But what this whole idea of the electrome is— I was trying to pull this all together because the idea behind the book is I really want people to just develop this umbrella of bioelectricity, call it the electrome, call it bioelectricity, but I kind of want the word electrome to do for bioelectricity research what the word genome did for molecular biology. So that’s basically the spiel.
Cass: So I want to surf back to a couple points you raised there, but first off, just for people who might not know, what is an action potential?
Adee: So the action potential is the electrical mechanism by which the nervous signal travels, either to actuate motion at the behest of your intent or to gain sensation and sort of perceive the world around you. And that’s the electrical part of the electrochemical nervous impulse. So everybody knows about neurotransmitters at the synapse and— well, not everybody, but probably Spectrum listeners. They know about the serotonin that’s released and all these other little guys. But the thing is you wouldn’t be able to have that release without the movement of charged particles called ions in and out of the nerve cell that actually send this impulse down and allow it to travel at a rate of speed that’s fast enough to let you yank your hand away from a hot stove when you’ve touched it, before you even sort of perceive that you did so.
Cass: So that actually brings me to my next question. So you may remember in some Spectrum‘s editorial meetings when we were deciding if a tech story was for us or not, that literally, we would often ask, “Where is the moving electron? Where is the moving electron?” But bioelectricity is not really based on moving electrons. It’s based on these ions.
Yeah. So let’s take the neuron as an example. So what you’ve got is— let me do like a— imagine a spherical cow for a neuron, okay? So you’ve got a blob and it’s a membrane, and that separates the inside of your cell from the outside of your cell. And this membrane is studded with tens of thousands, I think, little pores called ion channels. And the pores are not just sieve pores. They’re not inert. They’re really smart. And they decide which ions they like. Now, let’s go to the ions. Ions are suffusing your extracellular fluid, all the stuff that bathes you. It’s basically the reason they say you’re 66 percent water or whatever. This is like sieve water. It’s got sodium, potassium, calcium, etc., and these ions are charged particles.
So when you’ve got a cell, it likes potassium, the neuron, it likes potassium, it lets it in. It doesn’t really like sodium so much. It’s got very strong preferences. So in its resting state, which is its happy place, those channels allow potassium ions to enter. And those are probably where the electrons are, actually, because an ion, it’s got a plus-one charge or a minus-one charge based on— but let’s not go too far into it. But basically, the cell allows the potassium to come inside, and its resting state, which is its happy place, the separation of the potassium from the sodium causes, for all sorts of complicated reasons, a charge inside the cell that is minus 70 degree— sorry, minus 70 millivolts with respect to the extracellular fluid.
Cass: Before I read your book, I kind of had the idea that how neurons use electricity was, essentially, settled science, very well understood, all kind of squared away, and this was how the body used electricity. But even when it came to neurons, there’s a lot of fundamentals, kind of basic things about how neurons use electricity that we really only established relatively recently. Some of the research you’re talking about is definitely not a century-old kind of basic science about how these things work.
Adee: No, not at all. In fact, there was a paper released in 2018 that I didn’t include, which I’m really annoyed by. I just found it recently. Obviously, you can’t find all the papers. But it’s super interesting because it blends that whole sort of ionic basis of the action potential with another thing in my book that’s about how cell development is a little bit like a battery getting charged. Do you know how cells assume an electrical identity that may actually be in charge of the cell fate that they meet? And so we know abou— sorry, the book goes into more detail, but it’s like when a cell is stem or a fertilized egg, it’s depolarized. It’s at zero. And then when it becomes a nerve cell, it goes to that minus 70 that I was talking about before. If it becomes a fat cell, it’s at minus 50. If it’s musculoskeletal tissue, it goes to minus 90. Liver cells are like around minus 40. And so you’ve got real identitarian diversity, electrical diversity in your tissues, which has something to do with what they end up doing in the society of cells. So this paper that I was talking about, the 2018 paper, they actually looked at neurons. This was work from Denis Jabaudon at the University of Geneva, and they were looking at how neurons actually differentiate. Because when baby neurons are born-- your brain is made of all kinds of cells. It’s not just cortical cells. There’s staggering variety of classes of neurons. And as cells actually differentiate, you can watch their voltage change, just like you can do in the rest of the body with these electrosensitive dyes. So that’s an aspect of the brain that we hadn’t even realized until 2018.
Cass: And that all leads me to my next point, which is if you think bioelectricity, we think, okay, nerves zapping around. But neurons are not the only bioelectric network in the body. So talk about some of the other sorts of electrical networks we have, completely, or are largely separate from our neural networks?
Adee: Well, so Michael Levin is a professor at Tufts University. He does all kinds of other stuff, but mainly, I guess, he’s like the Paul Erdos of bioelectricity, I like to call him, because he’s sort of the central node. He’s networked into everybody, and I think he’s really trying to, again, also assemble this umbrella of bioelectricity to study this all in the aggregate. So his idea is that we are really committed to this idea of bioelectricity being in charge of our sort of central communications network, the way that we understand the environment around us and the way that we understand our ability to move and feel within it. But he thinks that bioelectricity is also how— that the nervous system kind of hijacked this mechanism, which is way older than any nervous system. And he thinks that we have another underlying network that is about our shape, and that this is bioelectrically mediated in really important ways, which impacts development, of course, but also wound healing. Because if you think about the idea that your body understands its own shape, what happens when you get a cut? How does it heal it? It has to go back to some sort of memory of what its shape is in order to heal it over. In animals that regenerate, they have a completely different electrical profile after they’ve been—so after they’ve had an arm chopped off.
So it’s a very different electrical— yeah, it’s a different electrical process that allows a starfish to regrow a limb than the one that allows us to scar over. So you’ve got this thing called a wound current. Your skin cells are arranged in this real tight wall, like little soldiers, basically. And what’s important is that they’re polarized in such a way that if you cut your skin, all the sort of ions flow out in a certain way, which creates this wound current, which then generates an electric field, and the electric field acts like a beacon. It’s like a bat signal, right? And it guides in these little helper cells, the macrophages that come and gobble up the mess and the keratinocytes and the guys who build it back up again and scar you over. And it starts out strong, and as you scar over, as the wound heals, it very slowly goes away. By the time the wound is healed, there’s no more field. And what was super interesting is this guy, Richard Nuccitelli, invented this thing called the Dermacorder that’s able to sense and evaluate the electric field. And he found that in people over the age of 65, the wound field is less than half of what it is in people under 25. And that actually goes in line with another weird thing about us, which is that our bioelectricity— or sorry, our regeneration capabilities are time-dependent and tissue-dependent.
So you probably know that the intestinal tissue regenerates all the time. You’re going to digest next week’s food with totally different cells than this morning’s food. But also, we’re time-dependent because when we’re just two cells, if you cleave that in half, you get identical twins. Later on during fetal development, it’s totally scarless, which is something we found out, because when we started being able to do fetal surgery in the womb, it was determined that we heal, basically, scarlessly. Then we’re born, and then between the ages of 7 and 11— until we are between the ages of 7 and 11, you chop off a fingertip, it regenerates perfectly, including the nail, but we lose that ability. And so it seems like the older we get, the less we regenerate. And so they’re trying to figure out now how— various programs are trying to figure out how to try to take control of various aspects of our sort of bioelectrical systems to do things like radically accelerate healing, for example, or how to possibly re-engage the body’s developmental processes in order to regenerate preposterous things like a limb. I mean, it sounds preposterous now. Maybe in 20 years, it’ll just be.
Cass: I want to get into some of the technologies that people are thinking of building on this sort of new science. Part of it is that the history of this field, both scientifically and technologically, has really been plagued by the shadow of quackery. And can you talk a little bit about this and how, on the one hand, there’s been some things we’re very glad that we stopped doing some very bad ideas, but it’s also had this shadow on sort of current research and trying to get real therapies to patients?
Adee: Yeah, absolutely. That was actually one of my favorite chapters to write, was the spectacular pseudoscience one, because, I mean, that is so much fun. So it can be boiled down to the fact that we were trigger happy because we see this electricity, we’re super excited about it. We start developing early tools to start manipulating it in the 1700s. And straight away, it’s like, this is an amazing new tool, and there’s all these sort of folk cures out there that we then decide that we’re going to take— not into the clinic. I don’t know what you’d call it, but people just start dispensing this stuff. This is separate from the discovery of endogenous electrical activity, which is what Luigi Galvani famously discovered in the late 1700s. He starts doing this. He’s an anatomist. He’s not an electrician. Electrician, by the way, is what they used to call the sort of literati who were in charge of discovery around electricity. And it had a really different connotation at the time, that they were kind of like the rocket scientists of their day.
But Galvani’s just an anatomist, and he starts doing all of these experiments using these new tools to zap frogs in various ways and permutations. And he decides that he has answered a whole different old question, which is how does man’s will animate his hands and let him feel the world around him? And he says, “This is electrical in nature.” This is a long-standing mystery. People have been bashing their heads against it for the past 100, 200 years. But he says that this is electrical, and there’s a big, long fight. I won’t get into too much between Volta, the guy who invented the battery, and Galvani. Volta says, “No, this is not electrical.” Galvani says, “Yes, it is.” But owing to events, when Volta invents the battery, he basically wins the argument, not because Galvani was wrong, but because Volta had created something useful. He had created a tool that people could use to advance the study of all kinds of things. Galvani’s idea that we have an endogenous electrical sort of impulse, it didn’t lead to anything that anybody could use because we didn’t have tools sensitive enough to really measure it. We only sort of had indirect measurements of it.
And his nephew, after he dies in ignominy, his nephew decides to bring it on himself to rescue, single-handedly, his uncle’s reputation. The problem is, the way he does it is with a series of grotesque, spectacular experiments. He very famously reanimated— well, zapped until they shivered, the corpses of all these dead guys, dead criminals, and he was doing really intense things like sticking electrodes connected to huge voltaic piles, Proto batteries, into the rectums of dead prisoners, which would make them sit up halfway and point at the people who are assembled, this very titillating stuff. Many celebrities of the time would crowd around these demonstrations.
Anyway, so Galvani basically—or sorry, Aldini, the nephew, basically just opens the door to everyone to be like, “Look what we can do with electricity.” Then in short order, there’s a guy who creates something called the Celestial Bed, which is a thing— they’ve got rings, they’ve got electric belts for stimulating the nethers. The Celestial Bed is supposed to help infertile couples. This is how sort of just wild electricity is in those days. It’s kind of like— you know how everybody went crazy for crypto scams last year? Electricity was like the crypto of 1828 or whatever, 1830s. And the Celestial Bed, so people would come and they would pay £9,000 to spend a night in it, right? Well, not at the time. That’s in today’s money. And it didn’t even use electricity. It used the idea of electricity. It was homeopathy, but electricity. You don’t even know where to start. So this is the sort of caliber of pseudoscience, and this is really echoed down through the years. That was in the 1800s. But when people submit papers or grant applications, I heard more than one researchers say to me— people would look at this electric stuff, and they’d be like, “Does anyone still believe this shit?” And it’s like, this is rigorous science, but it’s been just tarnished by the association with this.
Cass: So you mentioned wound care, and the book talks about some of the ways [inaudible] would care. But we’re also looking at other really ambitious ideas like regenerating limbs as part of this extension of wound care. And also, you make the point of certainly doing diagnostics and then possibly treatments for things like cancer. In thinking about cancer in a very different way than the really very, very tightly-focused genetic view we have of cancer now, and thinking about it kind of literally in a wider context. So can you talk about that a little bit?
Adee: Sure. And I want to start by saying that I went to a lot of trouble to be really careful in the book. I think cancer is one of those things that— I’ve had cancer in my family, and it’s tough to talk about it because you don’t want to give people the idea that there’s a cure for cancer around the corner when this is basic research and intriguing findings because it’s not fair. And I sort of struggled. I thought for a while, like, “Do I even bring this up?” But the ideas behind it are so intriguing, and if there were more research dollars thrown at it or pounds or whatever, Swiss francs, you might be able to really start moving the needle on some of this stuff. The idea is, there are two electrical— oh God, I don’t want to say avenues, but it is unfortunately what I have to do. There are two electrical avenues to pursue in cancer. The first one is something that a researcher called Mustafa Djamgoz at Imperial College here in the UK, he has been studying this since the ‘90s. Because he used to be a neurobiologist. He was looking at vision. And he was talking to some of his oncologist Friends, and they gave him some cancer cell lines, and he started looking at the behavior of cancer cells, the electrical behavior of cancer cells, and he started finding some really weird behaviors.
Cancer cells that should not have had anything to do with action potentials, like from prostate cancer lines, when he looked at them, they were oscillating like crazy, as if they were nerves. And then he started looking at other kinds of cancer cells, and they were all oscillating, and they were doing this oscillating behavior. So he spent like seven years sort of bashing his head against the wall. Nobody wanted to listen to him. But now, way more people are now investigating this. There’s going to be an ion channel at Cancer Symposium I think later this month, actually, in Italy. And he found, and a lot of other researchers like this woman, Annarosa Arcangeli, they have found that the reason that cancer cells may have these oscillating properties is that this is how they communicate with each other that it’s time to leave the nest of the tumor and start invading and metastasizing. Separately, there have been very intriguing-- this is really early days. It’s only a couple of years that they’ve started noticing this, but there have been a couple of papers now. People who are on certain kinds of ion channel blockers for neurological conditions like epilepsy, for example, they have cancer profiles that are slightly different from normal, which is that if they do get cancer, they are slightly less likely to die of it. In the aggregate. Nobody should be starting to eat ion channel blockers.
But they’re starting to zero in on which particular ion channels might be responsible, and it’s not just one that you and I have. These cancer kinds, they are like a expression of something that normally only exists when we’re developing in the womb. It’s part of the reason that we can grow ourselves so quickly, which of course, makes sense because that’s what cancer does when it metastasizes, it grows really quickly. So there’s a lot of work right now trying to identify how exactly to target these. And it wouldn’t be a cure for cancer. It would be a way to keep a tumor in check. And this is part of a strategy that has been proposed in the UK a little bit for some kinds of cancer, like the triple-negative kind that just keep coming back. Instead of subjecting someone to radiation and chemo, especially when they’re older, sort of just really screwing up their quality of life while possibly not even giving them that much more time. What if instead you sort of tried to treat cancer more like a chronic disease, keep it managed, and maybe that gives a person like 10 or 20 years? That’s a huge amount of time. And while not messing up with their quality of life.
This is a whole conversation that’s being had, but that’s one avenue. And there’s a lot of research going on in this right now that may yield fruit sort of soon. The much more sci-fi version of this, the studies have mainly been done in tadpoles, but they’re so interesting. So Michael Levin, again, and his postdoc at the time, I think, Brook Chernet, they were looking at what happens— so it’s uncontroversial that as a cancer cell-- so let’s go back to that society of cells thing that I was talking about. You get fertilized egg, it’s depolarized, zero, but then its membrane voltage charges, and it becomes a nerve cell or skin cell or a fat cell. What’s super interesting is that when those responsible members of your body’s society decide to abscond and say, “Screw this. I’m not participating in society anymore. I’m just going to eat and grow and become cancer,” their membrane voltage also changes. It goes much closer to zero again, almost like it’s having a midlife crisis or whatever.
So what they found, what Levin and Chernet found is that you can manipulate those cellular electrics to make the cell stop behaving cancerously. And so they did this in tadpoles. They had genetically engineered the tadpoles to express tumors, but when they made sure that the cells could not depolarize, most of those tadpoles did not express the tumors. And when they later took tadpoles that already had the tumors and they repolarized the voltage, those tumors, that tissue started acting like normal tissue, not like cancer tissue. But again, this is the sci-fi stuff, but the fact that it was done at all is so fascinating, again, from that epigenetic sort of body pattern perspective, right?
Cass: So sort of staying with that sci-fi stuff, except this one, even more closer to reality. And this goes back to some of these experiments which you zapped yourself. Can you talk a little bit about some of these sort of device that you can wear which appear to really enhance certain mental abilities? And some of these you [inaudible].
Adee: So the kit that I wore, I actually found out about it while I was at Spectrum, when I was a DARPATech. And this program manager told me about it, and I was really stunned to find out that just by running two milliamps of current through your brain, you would be able to improve your-- well, it’s not that your ability is improved. It was that you could go from novice to expert in half the time that it would take you normally, according to the papers. And so I really wanted to try it. I was trying to actually get an expert feature written for IEEE Spectrum, but they kept ghosting me, and then by the time I got to New Scientist, I was like, fine, I’m just going to do it myself. So they let me come over, and they put this kit on me, and it was this very sort of custom electrodes, these things, they look like big daisies. And this guy had brewed his own electrolyte solution and sort of smashed it onto my head, and it was all very slimy.
So I was doing this video game called DARWARS Ambush!, which is just like a training— it’s a shooter simulation to help you with shooting. So it was a Gonzo stunt. It was not an experiment. But he was trying to replicate the conditions of me not knowing whether the electricity was on as much as he could. So he had it sort of behind my back, and he came in a couple of times and would either pretend to turn it on or whatever. And I was practicing and I was really bad at it. That is not my game. Let’s just put it that way. I prefer driving games. But it was really frustrating as well because I never knew when the electricity was on. So I was just like, “There’s no difference. This sucks. I’m terrible.” And that sort of inner sort of buzz kept getting stronger and stronger because I’d also made bad choices. I’d taken a red-eye flight the night before. And I was like, “Why would I do that? Why wouldn’t I just give myself one extra day to recover before I go in and do this really complicated feature where I have to learn about flow state and electrical stimulation?” And I was just getting really tense and just angrier and angrier. And then at one point, he came in after my, I don’t know, 5th or 6th, I don’t know, 400th horrible attempt where I just got blown up every time. And then he turned on the electricity, and I could totally feel that something had happened because I have a little retainer in my mouth just at the bottom. And I was like, “Whoa.” But then I was just like, “Okay. Well, now this is going to suck extra much because I know the electricity is on, so it’s not even a freaking sham condition.” So I was mad.
But then the thing started again, and all of a sudden, all the sort of buzzing little angry voices just stopped, and it was so profound. And I’ve talked about it quite a bit, but every time I remember it, I get a little chill because it was the first time I’d ever realized, number one, how pissy my inner voices are and just how distracting they are and how abusive they are. And I was like, “You guys suck, all of you.” But somebody had just put a bell jar between me and them, and that feeling of being free from them was profound. At first, I didn’t even notice because I was just busy doing stuff. And all of a sudden, I was amazing at this game and I dispatched all of the enemies and whatnot, and then afterwards, when they came in, I was actually pissed because I was just like, “Oh, now I get it right and you come in after three minutes. But the last times when I was screwing it up, you left me in there to cook for 20 minutes.” And they were like, “No, 20 minutes has gone by,” which I could not believe. But yeah, it was just a really fairly profound experience, which is what led me down this giant rabbit hole in the first place. Because when I wrote the feature afterwards, all of a sudden I started paying attention to the whole TDCS thing, which I hadn’t yet. I had just sort of been focusing [crosstalk].
Cass: And that’s transcranial—?
Adee: Oh sorry, transcranial direct current stimulation.
Cass: There you go. Thank you. Sorry.
Adee: No. Yeah, it’s a mouthful. But then that’s when I started to notice that quackery we were talking about before. All that history was really informing the discussion around it because people were just like, “Oh, sure. Why don’t you zap your brain with some electricity and you become super smart.” And I was like, “Oh, did I like fall for the placebo effect? What happened here?” And there was this big study from Australia where the guy was just like, “When we average out all of the effects of TDCS, we find that it does absolutely nothing.” Other guys stimulated a cadaver to see if it would even reach the brain tissue and included it wouldn’t. But that’s basically what started me researching the book, and I was able to find answers to all those questions. But of course, TDCS, I mean, it’s finicky just like the electrome. It’s like your living bone is conductive. So when you’re trying to put an electric field on your head, basically, you have to account for things like how thick is that person’s skull in the place that you want to stimulate. They’re still working out the parameters.
There have been some really good studies that show sort of under which particular conditions they’ve been able to make it work. It does not work for all conditions for which it is claimed to work. There is some snake oil. There’s a lot left to be done, but a better understanding of how this affects the different layers of the sort of, I guess, call it, electrome, would probably make it something that you could use replicability. Is that a word? But also, that applies to things like deep brain stimulation, which, also, for Parkinson’s, it’s fantastic. But they’re trying to use it for depression, and in some cases, it works so—I want to use a bad word—amazingly. Just Helen Mayberg, who runs these trials, she said that for some people, this is an option of last resort, and then they get the stimulation, and they just get back on the bus. That’s her quote. And it’s like a switch that you flip. And for other people, it doesn’t work at all.
Cass: Well the book is packed with even more fantastic stuff, and I’m sorry we don’t have time to go through it, because literally, I could sit here and talk to you all day about this.
Adee: I didn’t even get into the frog battery, but okay, that’s fine. Fine, fine skip the frog. Sorry, I’m just kidding. I’m kidding, I’m kidding.
Cass: And thank you so much, Sally, for chatting with us today.
Adee: Oh, thank you so much. I really love talking about it, especially with you.
Cass: Today on Fixing the Future, we’re talking with Sally Adee about her new book on the body’s electrome. For IEEE Spectrum I’m Stephen Cass.
The north-east has suffered decades of industrial decline and a devastating cost of living crisis, which men say is having a detrimental impact on their mental health. Video producers Maeve Shearlaw and Christopher Cherry follow Earl John Charlton, who is using his experience of homelessness and drug addiction to get other men to open up. From walk and talks to open mic nights, amid the reality of working in a declining industry, he tells men in his community that it’s OK not to be OK
The women on a 'war footing' as the cost of living crisis deepens
Mould, cold and a community hub offering hope in the cost of living crisis
In the UK, Samaritans can be contacted on 116 123. In the US, the National Suicide Prevention Lifeline is 1-800-273-8255. In Australia, the crisis support service Lifeline is 13 11 14. Other international suicide helplines can be found at www.befrienders.org.
Continue reading...Many teenagers take a job at a restaurant or retail store, but Megan Dion got a head start on her engineering career. At 16, she landed a part-time position at FXB, a mechanical, electrical, and plumbing engineering company in Chadds Ford, Pa., where she helped create and optimize project designs.
She continued to work at the company during her first year as an undergraduate at the Stevens Institute of Technology, in Hoboken, N.J., where she is studying electrical engineering with a concentration in power engineering. Now a junior, Dion is part of the five-year Stevens cooperative education program, which allows her to rotate three full-time work placements during the second quarter of the school year through August. She returns to school full time in September with a more impressive résumé.
For her academic achievements, Dion received an IEEE Power & Energy Society scholarship and an IEEE PES Anne-Marie Sahazizian scholarship this year. The PES Scholarship Plus Initiative rewards undergraduates who one day are likely to build green technologies and change the way we generate and utilize power. Dion received US $2,000 from each scholarship toward her education.
She says she’s looking forward to networking with other scholarship recipients and IEEE members.
“Learning from other people’s stories and seeing myself in them and where my career could be in 10 or 15 years” motivates her, she says.
Dion’s early exposure to engineering came from her father, who owned a commercial electrical construction business for 20 years, and sparked her interest in the field. He would bring her along to meetings and teach her about the construction industry.
Then she was able to gain on-the-job experience at FXB, where she quickly absorbed what she observed around her.
“I would carry around a notebook everywhere I went, and I took notes on everything,” she says. “My team knew they never would have to explain something to me twice.”
“If I’m going to do something, I’m going to do it the best I can.”
She gained the trust of her colleagues, and they asked her to continue working with them while she attended college. She accepted the offer and supported a critical project at the firm: designing an underground power distribution and conduit system in the U.S. Virgin Islands to replace overhead power lines. The underground system could minimize power loss after hurricanes.
Skilled in AutoCAD software, she contributed to the electrical design. Dion worked directly with the senior electrical designer and the president of the company, and she helped deliver status updates. The experience, she says, solidified her decision to become a power engineer.
After completing her stint at FXB, she entered her first work placement through Stevens, which brought her to the Long Island Rail Road, in New York, through HNTB, an infrastructure design company in Kansas City, Mo. She completed an eight-month assignment at the LIRR, assisting the traction power and communications team in DC electrical system design for a major capacity improvement project for commuters in the New York metropolitan area.
Working on a railroad job was out of her comfort zone, she says, but she was up for the challenge.
“In my first meeting with the firm, I was in shock,” she says. “I was looking at train tracks and had to ask someone on the team to walk me through everything I needed to know, down to the basics.”
Dion describes how they spent two hours going through each type of drawing produced, including third-rail sectionalizing, negative-return diagrams, and conduit routing. Each sheet included 15 to 30 meters of a 3.2-kilometer section of track.
What Dion has appreciated most about the work placement program, she says, is learning about niche areas within power and electric engineering.
She’s now at her second placement, at structural engineering company Thornton Tomasetti in New York City, where she is diving into forensic engineering. The role interests her because of its focus on investigating what went wrong when an engineering project failed.
“My dad taught me to be 1 percent better each day.”
“It’s a career path I had never known about before,” she says. Thornton Tomasetti investigates when something goes awry during the construction process, determines who is likely at fault, and provides expert testimony in court.
Dion joined IEEE in 2020 to build her engineering network. She is preparing to graduate from Stevens next year, and then plans to pursue a master’s degree in electrical engineering while working full time.
To round out her experience and expertise in power and energy, Dion is taking business courses. She figures she might one day follow in her father’s entrepreneurial path.
“My dad is my biggest supporter as well as my biggest challenger,” she says. “He will always ask me ‘Why?’ to challenge my thinking and help me be the best I can be. He’s taught me to be 1 percent better each day.” She adds that she can go to him whenever she has an engineering question, pulling from his decades of experience in the industry.
Because of her background—growing up around the electrical industry—she has been less intimidated when she is the only woman in a meeting, she says. She finds that being a woman in a male-dominated industry is an opportunity, she says, adding that there is a lot of support and camaraderie among women in the field.
While excelling academically, she is also a starter on the varsity volleyball team at Stevens. She has played the sport since she was in the seventh grade. Her athletic background has taught her important skills, she says, including how to lead by example and the importance of ensuring the entire team is supported and working well together.
Dion’s competitive nature won’t allow her to hold herself back: “If I’m going to do something,” she says, “I’m going to do it the best I can.”
Poland has a deep and historic relationship with coal, importing huge amounts despite producing yet more locally. With the energy crisis biting, fuelled by the war in Ukraine, the country’s government withdrew restrictions on burning materials and subsidised coal, creating huge air quality issues, particularly in the industrial south – reversing 10 years of hard work by air pollution campaigners in the process.
The Guardian visits southern Poland to witness first hand the impact of this decision on affected communities, meeting the ostracised miners at the front of the culture wars, and joining climate activists visiting towns in the region that are fighting back against fossil fuels and air pollution
Continue reading...The Jet Propulsion Laboratory’s Ingenuity helicopter is preparing for the 50th flight of its five-flight mission to Mars. Flight 49, which took place last weekend, was its fastest and highest yet—the little helicopter flew 282 meters at an altitude of 16 meters, reaching a top speed of 6.50 meters per second. Not a bad performance for a tech demo that was supposed to be terminated two years ago.
From here, things are only going to get more difficult for Ingenuity. As the Perseverance rover continues its climb up the Jezero crater’s ancient river delta, Ingenuity is trying its best to scout ahead. But the winding hills and valleys make it difficult for the helicopter to communicate with the rover, and through the rover to its team back on Earth. And there isn’t a lot of time or room to spare, because Ingenuity isn’t allowed to fly too close to Perseverance, meaning that if the rover ever catches up to the helicopter, the helicopter may have to be left behind for the rover’s own safety. This high-stakes race between the helicopter scout and the science rover will continue for kilometers.
“Two years in, 10 kilometers flown, and we’re well over an hour now in the skies of Mars.”
—Teddy Tzanetos, NASA
For the Ingenuity team, this new mode of operation was both a challenge and an opportunity. This was nothing new for folks who have managed to keep this 30-day technology demo alive and healthy and productive for years, all from a couple hundred million kilometers away. IEEE Spectrum spoke with Ingenuity team lead Teddy Tzanetos at JPL last week about whether flying on Mars is ever routine, how they upgraded Ingenuity for its extended mission, and what the helicopter’s success means for the future of airborne exploration and science on Mars.
IEEE Spectrum: Is 50 flights on Mars a milestone for you folks, or are things routine enough now that you’re looking at it as just another flight?
Teddy Tzanetos: It’s hugely meaningful. We’ll come back to the routine question in a second, but it’s very meaningful for all of us. When we hit 10 and then 25 it was big, but 50 is a pretty serious number now that we’re 10 times our initial flight count. Two years in, 10 kilometers flown, and we’re well over an hour now in the skies of Mars. So hitting flight 50, it’s a big thing—we’re probably going to set up a happy hour and have a big party for the team.
Can you talk about some of the new challenges that Ingenuity has been facing as it makes its way up Jezero crater’s river delta along with the Perseverance rover?
Tzanetos: The core of the challenge here is that the paradigm has changed. When you look at the first year of Ingenuity’s extended operations, we were still in the Three Forks area, where the ground was flat. We could get line of sight from the helicopter to the rover from hundreds and hundreds of meters away. Our longest link that we established was 1.2 kilometers—a massive distance.
And then we started to realize that the rover was going to enter the river delta in like six months. It’s going to start climbing up through dozens and dozens of meters of elevation change and passing through ravines, and that’s going to start presenting a telecom issue for us. We knew that it couldn’t be business as usual anymore—if we still wanted to keep this helicopter mission going, not only did we need to change the way we were operating, we also had to change the helicopter itself.
“We owe it to everyone who worked on Ingenuity and everyone who will continue to work on rotorcraft on Mars to try and get everything out of this little spacecraft that we can.”
—Teddy Tzanetos, NASA
This realization culminated in the most challenging flight software upgrade we’ve ever done with Ingenuity, which happened last December. We went into the guts of our algorithms and added two new features. One was the ability to detect and react to landing hazards from the air, which involved handing over a little bit of autonomy back to Ingenuity, with the ability to tell it, “Fly to your terminal waypoint and try and land where we think is good, based off of orbital imagery. But if you have better information from your images than what we humans had here on Earth, and you see a hazard, pick a safer site and land there instead.” So that’s one huge change in what’s happening now. And we need that at the river delta because we’re no longer flying in a parking lot—besides the challenge of the elevation change, the terrain is different as well, with more and larger rocks that Ingenuity needs to avoid.
The second feature that we added was to include information about the terrain to Ingenuity’s navigation filter. When we designed Ingenuity, we assumed we were only going to be deployed on the flat terrain of Three Forks. Therefore, any change in the laser altimeter measurement we could trust to be a real change in the motion of the helicopter, or we could at least filter that into our altitude data. But that’s no longer the case. Now, as Ingenuity flies, if the altimeter sees a big decrease in elevation, that could be because the ground is rising to meet us rather than because we’re moving down. So since December, we’ve been telling Ingenuity about the elevation profile across its intended flight so that it knows what the ground is doing underneath it.
Now that both the rover and the helicopter have begun the river delta climb, we’re also paying very close attention to our telecom-link budget maps. You can imagine every hill or rise that could occlude the line of sight between the helicopter antenna and the rover antenna will have a big impact on your telecom link, and we have wonderful maps from orbit where we can pick a potential landing point and propagate our radio-link budget calculation across that point.
We’re trying to plan these flights as aggressively as we can to make sure that we stay ahead of Perseverance. We don’t want to run the risk of having a situation where the rover may need to wait for Ingenuity—that’s not a good thing for anybody. But we also want to provide value for the rover by scouting ahead, and what we hope to do on flight 50 is to get some imagery of the Belva crater, which is this beautiful massive crater to the north of where Ingenuity currently is. We’re going to get perspectives that the rover team would not be able to provide for the science team, and it’s really exciting for us when there are these moments that are uniquely driven by Ingenuity’s capability. We want to go after those, because we want to provide that value while she’s still healthy. While we still can. We owe it to everyone who worked on Ingenuity and everyone who will continue to work on rotorcraft on Mars to try and get everything out of this little spacecraft that we can.
“One of the best hallmarks of technology success is when you don’t realize it, or when it becomes boring. That means the technology is working, and that’s a wonderful feeling.”
—Teddy Tzanetos, NASA
At one point, NASA was very clear that Ingenuity’s mission would come to an end so that Perseverance could move on to focus on its primary mission. But obviously, Ingenuity is still flying, and still keeping up with the rover. Not only that, but we’ve heard from a rover driver how valuable it is to have Ingenuity scouting ahead. With that in mind, as Ingenuity navigates this challenging terrain, will there be any flexibility if something doesn’t go quite right, or will Perseverance just leave the helicopter behind?
Tzanetos: We have to look at the big picture. The most important thing at this point is for Perseverance to collect samples and do science. If you look at everything that needs to be done across all of the rover’s science payloads, every sol [Martian day] is precious. And the helicopter team understands that.
We’re doing our best to become more efficient, and I think that’s a big win that we don’t celebrate enough on the Ingenuity team internally—how much more efficient we are today compared to where we were two years ago. Earlier, you mentioned flying becoming routine. I think the team has succeeded in doing that, and I’m extremely proud of that accomplishment. One of the best hallmarks of technology success is when you don’t realize it, or when it becomes boring. That means the technology is working, and that’s a wonderful feeling.
There’s what’s called a tactical window that we have between the downlink of the last sol’s activity and when we need to uplink activity for the next sol, which is anywhere from five to 10 hours. A certain cadence of activities have to take place during that window, and we need to pass certain checkpoints to get our data uploaded and radiated through the Deep Space Network in time. We’ve worked very, very hard to minimize our footprint on that timeline, while also being reactive so that we can move quickly on any last-minute changes that the rover team needs us to accommodate. We have to get in, fly, and get out.
Anomalies will happen. That’s just the nature of Mars. But when those moments occur, the helicopter and rover teams back each other up. To be clear, no one on the helicopter team wants to cause a delay for the rover. We all want the rover to fulfill its mission, get its samples, and get the science done. If we have a serious anomaly, we’ll have to take that one sol at a time. We’re going to try as hard as we can to make sure we can keep pushing this little baby as far as we can while still accomplishing the core science mission.
NASA’s Ingenuity Mars Helicopter takes off and lands in this video captured on 19 April 2021 by Mastcam-Z, an imager aboard NASA’s Perseverance Mars rover. This video features only the moments of takeoff and the landing—and not footage of the helicopter hovering for about 30 seconds.NASA/JPL-Caltech/ASU/MSSS
How do you balance risk to the helicopter against exploration and science goals, or trying new things like pushing Ingenuity’s flight envelope?
Tzanetos: That’s the fun part! There’s no instruction manual. The way we do it is we have a phone call with the core people on the team, and everyone just shares their opinions. The highest priority for us is getting some good scouting imagery for the scientists and rover drivers—we jump at those opportunities. If we’re flying through a piece of terrain that isn’t particularly interesting, that’s when we start looking at the flight envelope developments, right? With flight 49, we’re going higher than we ever had before and flying faster than we ever have before. That’s not a request from the science community or the rover planners; that’s coming from our own internal team where we’re trying to release capability piece by piece as the flights go on, because every time we get that win, it’s a win for the sample recovery helicopters. So there’s that ever-present pressure to push harder, push faster, push higher. And let’s also get some wonderful scouting data along the way when we can.
What have you learned about flying helicopters on Mars from 50 flights that you would have no idea about if you’d been able to do just five flights?
Tzanetos: Tons of things, since I just talked about flying faster and flying higher, and we’ve now legitimately expanded Ingenuity’s flight envelope. There’s the lifetime argument, which is obvious—this design has lasted much longer than anyone could have expected, even just in terms of parts and workmanship. Each one of Ingenuity’s nearly 1,000 solder joints were soldered by technicians at JPL who have the most blessed, precise hands. We’d designed Ingenuity to fly in springtime on Mars, but during the Martian winter, for more than 200 sols the temperature cycled between 20 °C and –90 °C and back again. Eventually, it got so cold that Ingenuity’s battery would die every night, the heater would stop running, and everything would freeze. That was a massive curve ball that we had to contend with, but because of the workmanship of those people, Ingenuity was able to survive.
“We now have a stake in the ground to say, ‘Off-the-shelf works, we can trust these things.’”
—Teddy Tzanetos, NASA
Also, dust. We knew that dust would settle on Ingenuity’s solar panel, but we’ve shown that through the process of flying, there’s some sort of effect that’s helping us to keep our panel clean. It’s difficult to put a finger on exactly what it is—maybe the vibration of flight, or the downwash of air passing over the solar panel and into the rotors, or the oncoming air as we move forward. And it wasn’t just the dust on the panels; we also got dust in our actuators. Last year, Ingenuity weathered a big dust storm, and afterwards when we tried checking our control surfaces, things did not look good. The motor currents were way too high, and we were left scratching our heads, trying to figure out what to do. We didn’t have dust boots around the rotor system simply because we had thought, “We’re only going to be operating for 30 days, we don’t need them.”
Our partners at AeroVironment [who worked with JPL on the Mars helicopter design] had one of the swash plate mechanisms lying around, so they spoke to our geologists to figure out what kinds of dust particles might have gotten blown into the swash plate on Mars. We sent them some simulated Mars dust, and they threw it at the swash plate, and then did an experiment to figure out how many times they needed to cycle it before it started to operate properly. Seven cycles got most of the dust out, so we tried that on Mars, and it worked. So now we have a new tool in our tool belt: We know how to clean ourselves. That’s huge. And we wouldn’t have figured out any of these things had we not gone past five flights.
Looking at the Mars sample return helicopters, how much of their design has been made possible by the fact that Ingenuity has been able to fly this long and answer these questions that you might not have even thought to ask?
The entire design. I don’t think we’d be talking about sample recovery helicopters if Ingenuity didn’t fly, period, and if it hadn’t survived for as long as it has. You have to keep in mind, Ingenuity is a tech demo. These sample recovery helicopters are a real part of the mission now. If Perseverance has an anomaly in the next decade, these helicopters are the backup—they have to work. And I’m sure that Ingenuity’s two years of extended operations provided the evidence necessary to even start talking about the sample recovery helicopters. Otherwise, it would be crazy to think, “Let’s go from tech demo to part of a class B mission within a year.”
That’s amazing. It must feel really good for you folks to have completely changed what the sample return mission looks like because of how successful Ingenuity has been.
Absolutely. I personally thought to myself, “Hey, this is great, Ingenuity has been doing a great job, and this will be wonderful data for the next time we send a rotorcraft to Mars.” Which I thought was going to be like 10 years later—I thought that the Mars sample return would happen with a rover, and then maybe after that, we could throw some helicopters on Mars, maybe a hexacopter with some science payloads on it. Never in my wildest dreams did I ever think, while we’re still flying Ingenuity, that we’d be designing the next helicopter mission based on Ingenuity to go to Mars.
More broadly, how has Ingenuity influenced NASA’s approach to robotics?
From a robotics perspective, I hope one of the long-lasting impacts of Ingenuity is the adoption of commercial off-the-shelf technology into more NASA missions, and other non-NASA missions into space. This was the first time we flew a cellphone processor, not because we loved the idea about using a part that wasn’t radiation hardened but because we were forced to. We needed a high-throughput processor, and the only way to do that and be lightweight enough was to use a cellphone chip. There was a lot of concern about that—we did some initial testing, but given that we were a tech demo, which means high-risk, high reward, we could only do so much. And here we are, two years later, with this Snapdragon Qualcomm processor that’s been running for two years on the surface of Mars, not to mention all the other components like the IMU [inertial measurement unit], the camera, the battery, the solar panels. I think that’s one of the unsung victories of Ingenuity. We now have a stake in the ground to say, “Off-the-shelf works, we can trust these things.” And we can make a stronger argument for the next mission to really enable your engineers and your scientists to have much more technology on board than anything else we’ve sent into space.
Ingenuity will attempt Flight 50 anytime now, with the goal of traveling 300 meters to the other side of a ridge. The landing site may make it difficult to know whether the flight was successful until Perseverance catches up a bit, but we hope to hear the good news within the next few days.
Space is hard. Every time a rocket crashes or a probe goes silent, someone invokes the mantra that it’s hard to reach for the stars. Rockets are complicated machines, often with thousands of parts that can doom a mission if just one fails.
Relativity Space, a California-based startup, is trying a new approach—3D printed rockets to simplify the assembly and structure of launch vehicles. Late Wednesday night it had, by its own description, a partial success. Its first Terran 1 rocket lifted off from Launch Complex 16 at Cape Canaveral in Florida, and its first stage carried it nearly 100 kilometers toward orbit. But apparently something went wrong with the second stage as it tried to start, and the rocket’s remains fell into the Atlantic.
“Look at that blue fire!” yelled a launch commentator on the company’s webcast of the launch as the methane-fueled rocket streaked into the sky. Two minutes and 40 seconds after launch, the first stage shut down on schedule and dropped away. Video from a camera on the second stage showed its engine ready to go. But then, a moment later, the voice of launch director Clay Walker could be heard: “T-plus anomaly with stage two.”
“Today is a huge win, with many historic firsts,” said the company in an upbeat tweet after the launch attempt was over. How so? “We successfully made it through Max-Q, the highest stress state on our printed structures. This is the biggest proof point for our novel additive manufacturing approach.”
The Terran 1 rocket sits on the launch pad at Cape Canaveral during the countdown for its second launch attempt.Trevor Mahlmann/Relativity Space
The company said it would go through the data it had gathered during the flight and provide updates in the coming days. It did not immediately offer further details.
In fairness, no private space company has made it to orbit on its first try, and Relativity had been trying for months to play down expectations for the Terran 1. This first mission, nicknamed “Good Luck, Have Fun” (GLHF for short), carried no payload.
How would Relativity define success? “We’ll let our customers answer that,” said Josh Brost, Relativity’s head of business development, in an interview with IEEE Spectrum last November, while GLHF was being prepped for flight.
Relativity says that about 85 percent of its first rocket by mass was 3D printed, and the company eventually hopes to raise that to 95 percent. Additive manufacturing offers many advantages. The first is that the Terran 1 probably has one-hundredth the number of parts that make up a conventional rocket of similar capability—which means vastly fewer seams, fewer spot welds or bolts to hold pieces together, and fewer joints in propellant lines. In sum, there are fewer components to make and fewer places where failures can occur.
“The real thing we’re looking to get from the first launch is validating that a 3D printed rocket can survive the rigors of the launch environment,” said Brost. “We’re collecting as much data as we can to help our engineers validate or improve what they’ve developed over the last few years on the ground.”
Building a 3D printed rocket, says the company, is dramatically different from what one would see on conventional aerospace assembly lines. Instead of milling and bending with exacting labor to shape thousands of components, the primary tool is a robotic arm, adding liquified or powered metal alloys, layer by layer, to whatever part of the vehicle is being fabricated.
Just as an example, a rocket nozzle often has a complicated network of coolant pipes surrounding it, with cryogenic propellants pumped through to keep the nozzle from overheating when the fuel is pumped into the combustion chamber and ignited. That’s a tall order. The coolant lines need to be intricate and sturdy, lightweight, and well-insulated, all at the same time. The result is that traditional booster engines can have more than a thousand parts. Relativity says its engines have a fraction as many.
Relativity’s Terran 1 rocket lifts off. The first stage apparently worked well, but the second stage failed and did not reach orbit.Relativity Space
Three-D printing also makes modifications easier and far faster. Presuming that Relativity can determine what went wrong with the second stage, the team there says they may not have to rebuild from scratch. Instead, they’ve said, with some application of artificial intelligence, they can change the software commands for the 3D printing of future rockets they assemble.
Relativity has said it is using the Terran 1 as a test bed; if it’s successful, it will move on to a larger rocket, dubbed the Terran R, which it says can carry 20,000 kilograms of payload into low Earth orbit. The company says it has several orders from satellite makers who want to use it. And further out—way further out—it talks about taking fuller advantage of its technology. If 3D printing can be used to fabricate launch rockets on Earth, can it be used to make habitats on Mars? It’s certainly not a realistic proposition yet, but in the early years of SpaceX, Elon Musk made it an animating force in his company’s efforts to venture into the skies.
“We believe that we’re participating in the excitement of the new space industry,” said Scott Van Vliet, Relativity’s head of software engineering, “and we’re disrupting traditional mechanisms for building and launching vehicles.”
In this article, we explore the top 10 AI tools that are driving innovation and efficiency in various industries. These tools are designed to automate repetitive tasks, improve workflow, and increase productivity. The tools included in our list are some of the most advanced and widely used in the market, and are suitable for a variety of applications. Some of the tools focus on natural language processing, such as ChatGPT and Grammarly, while others focus on image and video generation, such as DALL-E and Lumen5. Other tools such as OpenAI Codex, Tabnine, Canva, Jasper AI,, and Surfer SEO are designed to help with specific tasks such as code understanding content writing and website optimization. This list is a great starting point for anyone looking to explore the possibilities of AI and how it can be applied to their business or project.
So let’s dive into
ChatGPT is a large language model that generates human-like
responses to a variety of prompts. It can be used for tasks such as language
translation, question answering, and text completion. It can
handle a wide range of topics and styles of writing, and generates coherent and
fluent text, but should be used with care as it may generate text that is
biased, offensive, or factually incorrect.
Pros:
Cons:
Overall, ChatGPT is a powerful tool for natural language
processing, but it should be used with care and with an understanding of its
limitations.
DALL-E is a generative model developed by OpenAI that is
capable of generating images from text prompts. It is based on the GPT-3 architecture,
which is a transformer-based neural network language model that has been
trained on a massive dataset of text. DALL-E can generate images that
are similar to a training dataset and it can generate high-resolution
images that are suitable for commercial use.
Pros:
Cons:
Overall, DALL-E is a powerful AI-based tool for generating
images, it can be used for a variety of applications such as creating images
for commercial use, gaming, and other creative projects. It is important to
note that the generated images should be reviewed and used with care, as they
may not be entirely original and could be influenced by the training data.
Lumen5 is a content creation platform that uses AI to help
users create videos, social media posts, and other types of content. It has
several features that make it useful for content creation and marketing,
including:
Pros:
Cons:
Overall, Lumen5 is a useful tool for creating content
quickly and easily, it can help automate the process of creating videos, social
media posts, and other types of content. However, the quality of the generated
content may vary depending on the source material and it is important to review
and edit the content before publishing it.
Grammarly is a writing-enhancement platform that uses AI to
check for grammar, punctuation, and spelling errors in the text. It also provides
suggestions for improving the clarity, concision, and readability of the text. It
has several features that make it useful for improving writing, including:
Pros:
Cons:
OpenAI Codex is a system developed by OpenAI that can
create code from natural language descriptions of software tasks. The system is
based on the GPT-3 model and can generate code in multiple programming
languages.
Pros:
Cons:
Overall, OpenAI Codex is a powerful tool that can help
automate the process of writing code and make it more accessible to
non-technical people. However, the quality of the generated code may vary
depending on the task description and it is important to review and test the
code before using it in a production environment. It is important to use the
tool as an aid, not a replacement for the developer's knowledge.
Tabnine is a code completion tool that uses AI to predict
and suggest code snippets. It is compatible with multiple programming languages
and can be integrated with various code editors.
Pros:
Cons:
Overall, TabNine is a useful tool for developers that can
help improve coding efficiency and reduce the time spent on writing code.
However, it is important to review the suggestions provided by the tool and use
them with caution, as they may not always be accurate or appropriate. It is
important to use the tool as an aid, not a replacement for the developer's
knowledge.
Jasper is a content writing and content generation tool that uses artificial intelligence to identify the best words and sentences for your writing style and medium in the most efficient, quick, and accessible way.
Pros:
Cons:
Surfer SEO is a software tool designed to help website
owners and digital marketers improve their search engine optimization (SEO)
efforts. The tool provides a variety of features that can be used to analyze a
website's on-page SEO, including:
Features:
Pros:
Cons:
Overall, Surfer SEO can be a useful tool for website owners
and digital marketers looking to improve their SEO efforts. However, it is
important to remember that it is just a tool and should be used in conjunction
with other SEO best practices. Additionally, the tool is not a guarantee of
better ranking.
Zapier is a web automation tool that allows users to
automate repetitive tasks by connecting different web applications together. It
does this by creating "Zaps" that automatically move data between
apps, and can also be used to trigger certain actions in one app based on
events in another app.
Features:
Pros:
Cons:
Overall, Zapier is a useful tool that can help users
automate repetitive tasks and improve workflow. It can save time and increase
productivity by connecting different web applications together. However, it may
require some technical skills and some features may require a paid
subscription. It is important to use the tool with caution and not to rely too
much on it, to understand the apps better.
Compose AI is a company that specializes in developing
natural language generation (NLG) software. Their software uses AI to
automatically generate written or spoken text from structured data, such as
spreadsheets, databases, or APIs.
Features:
Pros:
Cons:
Overall, Compose AI's NLG software can be a useful tool for
automating the process of creating written or spoken content from structured
data. However, the quality of the generated content may vary depending on the
data source, and it is essential to review the generated content before using
it in a production environment. It is important to use the tool as an aid, not
a replacement for the understanding of the data.
AI tools are becoming increasingly important in today's
business and technology landscape. They are designed to automate repetitive
tasks, improve workflow, and increase productivity. The top 10 AI tools
included in this article are some of the most advanced and widely used in the
market, and are suitable for various applications. Whether you're looking
to improve your natural language processing, create high-resolution images, or
optimize your website, there is an AI tool that can help. It's important to
research and evaluate the different tools available to determine which one is
the best fit for your specific needs. As AI technology continues to evolve,
these tools will become even more powerful and versatile and will play an even
greater role in shaping the future of business and technology.
Three days before astronauts left on Apollo 8, the first-ever flight around the moon, NASA’s safety chief, Jerome Lederer, gave a speech that was at once reassuring and chilling. Yes, he said, the United States’ moon program was safe and well-planned—but even so, “Apollo 8 has 5,600,000 parts and one and one half million systems, subsystems, and assemblies. Even if all functioned with 99.9 percent reliability, we could expect 5,600 defects.”
The mission, in December 1968, was nearly flawless—a prelude to the Apollo 11 landing the next summer. But even today, half a century later, engineers wrestle with the sheer complexity of the machines they build to go to space. NASA’s Artemis I, its Space Launch System rocket mandated by Congress in 2010, endured a host of delays before it finally launched in November 2022. And Elon Musk’s SpaceX may be lauded for its engineering acumen, but it struggled for six years before its first successful flight into orbit.
Relativity envisions 3D-printing facilities someday on the Martian surface, fabricating much of what people from Earth would need to live there.
Is there a better way? An upstart company called Relativity Space is about to try one. Its Terran 1 rocket, the company says, has about a tenth as many parts as comparable launch vehicles do, because it is made through 3D printing. Instead of bending metal and milling and welding, engineers program a robot to deposit layers of metal alloy in place.
Relativity’s first rocket, the company says, is ready to go from launch complex 16 at Cape Canaveral, Fla. When it happens, the company says it will stream the liftoff on YouTube.
Artist’s concept of Relativity’s planned Terran R rocket. The company says it should be able to carry a 20,000-kilogram payload into low Earth orbit.Relativity
“Over 85 percent of the rocket by mass is 3D printed,” said Scott Van Vliet, Relativity’s head of software engineering. “And what’s really cool is not only are we reducing the amount of parts and labor that go into building one of these vehicles over time, but we’re also reducing the complexity, we’re reducing the chance of failure when you reduce the part count, and you streamline the build process.”
Relativity says it can put together a Terran rocket in two months, compared to two years for some conventionally built ones. The speed and cost of making a prototype—say, for wind-tunnel testing—are reduced because you tell the printer to make a scaled-down model. There is less waste because the process is additive. And if something needs to be modified, you reprogram the 3D printer instead of slow, expensive retooling.
Investors have noticed. The company says financial backers have included BlackRock, Y Combinator and the entrepreneur Mark Cuban.
“If you walk into any rocket factory today other than ours,” said Josh Brost, the company’s head of business development, “you still will see hundreds of thousands of parts coming from thousands of vendors, and still being assembled using lots of touch labor and lots of big-fix tools.”
Terran 1 Nose Cone Timelapse Check out this timelapse of our nose cone build for Terran 1. This milestone marks the first time we’ve created this unique shape ...
Terran 1, rated as capable of putting a 1,250-kilogram payload in low Earth orbit, is mainly intended as a test bed. Relativity has signed up a variety of future customers for satellite launches, but the first Terran 1 (“Terran” means “earthling”) will not carry a paying customer’s satellite. The first flight has been given the playful name “Good Luck, Have Fun”—GLHF for short. Eventually, if things are going well, Relativity will build a larger booster, called Terran R, which the company hopes will compete with the SpaceX Falcon 9 for launches of up to 20,000 kg. Relativity says the Terran R should be fully reusable, including the upper stage—something that other commercial launch companies have not accomplished. In current renderings, the rocket is, as the company puts it, “inspired by nature,” shaped to slice through the atmosphere as it ascends and comes back for recovery.
A number of Relativity’s top people came from Musk’s SpaceX or Jeff Bezos’s space company, Blue Origin, and, like Musk, they say their vision is a permanent presence on Mars. Brost calls it “the long-term North Star for us.” They say they can envision 3D-printing facilities someday on the Martian surface, fabricating much of what people from Earth would need to live there. “For that to happen,” says Brost, “you need to have manufacturing capabilities that are autonomous and incredibly flexible.”
Relativity’s fourth-generation Stargate 3D printer.Relativity
Just how Relativity will do all these things is a work in progress. The company says its 3D technology will help it work iteratively—finding mistakes as it goes, then correcting them as it prints the next rocket, and the next, and so on.
“In traditional manufacturing, you have to do a ton of work up front and have a lot of the design features done well ahead of time,” says Van Vliet. “You have to invest in fixed tooling that can often take years to build before you’ve actually developed an article for your launch vehicle. With 3D printing, additive manufacturing, we get to building something very, very quickly.”
The next step is to get the first rocket off the pad. Will it succeed? Brost says a key test will be getting through max q—the point of maximum dynamic pressure on the rocket as it accelerates through the atmosphere before the air around it thins out.
“If you look at history, at new space companies doing large rockets, there’s not a single one that’s done their first rocket on their first try. It would be quite an achievement if we were able to achieve orbit on our inaugural launch,” says Brost.
“I’ve been to many launches in my career,” he says, “and it never gets less exciting or nerve wracking to me.”
Each January, the editors of IEEE Spectrum offer up some predictions about technical developments we expect to be in the news over the coming year. You’ll find a couple dozen of those described in the following special report. Of course, the number of things we could have written about is far higher, so we had to be selective in picking which projects to feature. And we’re not ashamed to admit, gee-whiz appeal often shaped our choices.
For example, this year’s survey includes an odd pair of new aircraft that will be taking to the skies. One, whose design was inspired by the giant airships of years past, is longer than a football field; the other, a futuristic single-seat vertical-takeoff craft powered by electricity, is about the length of a small car.
While some of the other stories might not light up your imagination as much, they highlight important technical issues the world faces—like the challenges of shifting from fossil fuels to a hydrogen-based energy economy or the threat that new plutonium breeder reactors in China might accelerate the proliferation of nuclear weapons. So whether you prefer reading about topics that are heavy or light (even lighter than air), you should find something here to get you warmed up for 2023.
This article appears in the January 2023 print issue.
Top Tech 2023: A Special Report
Preview exciting technical developments for the coming year.
Can This Company Dominate Green Hydrogen?
Fortescue will need more electricity-generating capacity than France.
Pathfinder 1 could herald a new era for zeppelins
A New Way to Speed Up Computing
Blue microLEDs bring optical fiber to the processor.
The Personal-Use eVTOL Is (Almost) Here
Opener’s BlackFly is a pulp-fiction fever dream with wings.
Baidu Will Make an Autonomous EV
Its partnership with Geely aims at full self-driving mode.
China Builds New Breeder Reactors
The power plants could also make weapons-grade plutonium.
Economics Drives a Ray-Gun Resurgence
Lasers should be cheap enough to use against drones.
A Cryptocurrency for the Masses or a Universal ID?
What Worldcoin’s killer app will be is not yet clear.
The company’s Condor chip will boast more than 1,000 qubits.
Vagus-nerve stimulation promises to help treat autoimmune disorders.
New satellites can connect directly to your phone.
The E.U.’s first exascale supercomputer will be built in Germany.
A dozen more tech milestones to watch for in 2023.
![]() |
The marketing industry is turning to artificial intelligence (AI) as a way to save time and execute smarter, more personalized campaigns. 61% of marketers say AI software is the most important aspect of their data strategy.
If you’re late to the AI party, don’t worry. It’s easier than you think to start leveraging artificial intelligence tools in your marketing strategy. Here are 11 AI marketing tools every marketer should start using today.
Personalize is an AI-powered technology that helps you identify and produce highly targeted sales and marketing campaigns by tracking the products and services your contacts are most interested in at any given time. The platform uses an algorithm to identify each contact’s top three interests, which are updated in real-time based on recent site activity.
Key Features
Seventh Sense provides behavioral analytics that helps you win attention in your customers’ overcrowded email inboxes. Choosing the best day and time to send an email is always a gamble. And while some days of the week generally get higher open rates than others, you’ll never be able to nail down a time that’s best for every customer. Seventh Sense eases your stress of having to figure out the perfect send-time and day for your email campaigns. The AI-based platform figures out the best timing and email frequency for each contact based on when they’re opening emails. The tool is primarily geared toward HubSpot and Marketo customers
Key Features
Phrasee uses artificial intelligence to help you write more effective subject lines. With its AI-based Natural Language Generation system, Phrasee uses data-driven insights to generate millions of natural-sounding copy variants that match your brand voice. The model is end-to-end, meaning when you feed the results back to Phrasee, the prediction model rebuilds so it can continuously learn from your audience.
Key Features
HubSpot Search Engine Optimization (SEO) is an integral tool for the Human Content team. It uses machine learning to determine how search engines understand and categorize your content. HubSpot SEO helps you improve your search engine rankings and outrank your competitors. Search engines reward websites that organize their content around core subjects, or topic clusters. HubSpot SEO helps you discover and rank for the topics that matter to your business and customers.
Key Features
When you’re limited to testing two variables against each other at a time, it can take months to get the results you’re looking for. Evolv AI lets you test all your ideas at once. It uses advanced algorithms to identify the top-performing concepts, combine them with each other, and repeat the process to achieve the best site experience.
Key Features
Acrolinx is a content alignment platform that helps brands scale and improves the quality of their content. It’s geared toward enterprises – its major customers include big brands like Google, Adobe, and Amazon - to help them scale their writing efforts. Instead of spending time chasing down and fixing typos in multiple places throughout an article or blog post, you can use Acrolinx to do it all right there in one place. You start by setting your preferences for style, grammar, tone of voice, and company-specific word usage. Then, Acrolinx checks and scores your existing content to find what’s working and suggest areas for improvement. The platform provides real-time guidance and suggestions to make writing better and strengthen weak pages.
Key features
MarketMuse uses an algorithm to help marketers build content strategies. The tool shows you where to target keywords to rank in specific topic categories, and recommends keywords you should go after if you want to own particular topics. It also identifies gaps and opportunities for new content and prioritizes them by their probable impact on your rankings. The algorithm compares your content with thousands of articles related to the same topic to uncover what’s missing from your site.
Key features:
Copilot is a suite of tools that help eCommerce businesses maintain real-time communication with customers around the clock at every stage of the funnel. Promote products, recover shopping carts and send updates or reminders directly through Messenger.
Key features:
Yotpo’s deep learning technology evaluates your customers’ product reviews to help you make better business decisions. It identifies key topics that customers mention related to your products—and their feelings toward them. The AI engine extracts relevant reviews from past buyers and presents them in smart displays to convert new shoppers. Yotpo also saves you time moderating reviews. The AI-powered moderation tool automatically assigns a score to each review and flags reviews with negative sentiment so you can focus on quality control instead of manually reviewing every post.
Key features:
Albert is a self-learning software that automates the creation of marketing campaigns for your brand. It analyzes vast amounts of data to run optimized campaigns autonomously, allowing you to feed in your own creative content and target markets, and then use data from its database to determine key characteristics of a serious buyer. Albert identifies potential customers that match those traits, and runs trial campaigns on a small group of customers—with results refined by Albert himself—before launching it on a larger scale.
Albert plugs into your existing marketing technology stack, so you still have access to your accounts, ads, search, social media, and more. Albert maps tracking and attribution to your source of truth so you can determine which channels are driving your business.
Key features:
There are many tools and companies out there that offer AI tools, but this is a small list of resources that we have found to be helpful. If you have any other suggestions, feel free to share them in the comments below this article. As marketing evolves at such a rapid pace, new marketing strategies will be invented that we haven't even dreamed of yet. But for now, this list should give you a good starting point on your way to implementing AI into your marketing mix.
Note: This article contains affiliate links, meaning we make a small commission if you buy any premium plan from our link.
Grammarly is a tool that checks for grammatical errors, spelling, and punctuation.it gives you comprehensive feedback on your writing. You can use this tool to proofread and edit articles, blog posts, emails, etc.
Grammarly also detects all types of mistakes, including sentence structure issues and misused words. It also gives you suggestions on style changes, punctuation, spelling, and grammar all are in real-time. The free version covers the basics like identifying grammar and spelling mistakes
whereas the Premium version offers a lot more functionality, it detects plagiarism in your content, suggests word choice, or adds fluency to it.
ProWritingAid is a style and grammar checker for content creators and writers. It helps to optimize word choice, punctuation errors, and common grammar mistakes, providing detailed reports to help you improve your writing.
ProWritingAid can be used as an add-on to WordPress, Gmail, and Google Docs. The software also offers helpful articles, videos, quizzes, and explanations to help improve your writing.
Here are some key features of ProWriting Aid:
Grammarly and ProWritingAid are well-known grammar-checking software. However, if you're like most people who can't decide which to use, here are some different points that may be helpful in your decision.
As both writing assistants are great in their own way, you need to choose the one that suits you best.
Both ProWritingAid and Grammarly are awesome writing tools, without a doubt. but as per my experience, Grammarly is a winner here because Grammarly helps you to review and edit your content. Grammarly highlights all the mistakes in your writing within seconds of copying and pasting the content into Grammarly’s editor or using the software’s native feature in other text editors.
Not only does it identify tiny grammatical and spelling errors, it tells you when you overlook punctuations where they are needed. And, beyond its plagiarism-checking capabilities, Grammarly helps you proofread your content. Even better, the software offers a free plan that gives you access to some of its features.
Are you searching for an ecomerce platform to help you build an online store and sell products?
In this Sellfy review, we'll talk about how this eCommerce platform can let you sell digital products while keeping full control of your marketing.
And the best part? Starting your business can be done in just five minutes.
Let us then talk about the Sellfy platform and all the benefits it can bring to your business.
Sellfy is an eCommerce solution that allows digital content creators, including writers, illustrators, designers, musicians, and filmmakers, to sell their products online. Sellfy provides a customizable storefront where users can display their digital products and embed "Buy Now" buttons on their website or blog. Sellfy product pages enable users to showcase their products from different angles with multiple images and previews from Soundcloud, Vimeo, and YouTube. Files of up to 2GB can be uploaded to Sellfy, and the company offers unlimited bandwidth and secure file storage. Users can also embed their entire store or individual project widgets in their site, with the ability to preview how widgets will appear before they are displayed.
Sellfy includes:
Sellfy is a powerful e-commerce platform that helps you personalize your online storefront. You can add your logo, change colors, revise navigation, and edit the layout of your store. Sellfy also allows you to create a full shopping cart so customers can purchase multiple items. And Sellfy gives you the ability to set your language or let customers see a translated version of your store based on their location.
Sellfy gives you the option to host your store directly on its platform, add a custom domain to your store, and use it as an embedded storefront on your website. Sellfy also optimizes its store offerings for mobile devices, allowing for a seamless checkout experience.
Sellfy allows creators to host all their products and sell all of their digital products on one platform. Sellfy also does not place storage limits on your store but recommends that files be no larger than 5GB. Creators can sell both standard and subscription-based products in any file format that is supported by the online marketplace. Customers can purchase products instantly after making a purchase – there is no waiting period.
You can organize your store by creating your product categories, sorting by any characteristic you choose. Your title, description, and the image will be included on each product page. In this way, customers can immediately evaluate all of your products. You can offer different pricing options for all of your products, including "pay what you want," in which the price is entirely up to the customer. This option allows you to give customers control over the cost of individual items (without a minimum price) or to set pricing minimums—a good option if you're in a competitive market or when you have higher-end products. You can also offer set prices per product as well as free products to help build your store's popularity.
Sellfy is ideal for selling digital content, such as ebooks. But it does not allow you to copyrighted material (that you don't have rights to distribute).
Sellfy offers several ways to share your store, enabling you to promote your business on different platforms. Sellfy lets you integrate it with your existing website using "buy now" buttons, embed your entire storefront, or embed certain products so you can reach more people. Sellfy also enables you to connect with your Facebook page and YouTube channel, maximizing your visibility.
Sellfy is a simple online platform that allows customers to buy your products directly through your store. Sellfy has two payment processing options: PayPal and Stripe. You will receive instant payments with both of these processors, and your customer data is protected by Sellfy's secure (PCI-compliant) payment security measures. In addition to payment security, Sellfy provides anti-fraud tools to help protect your products including PDF stamping, unique download links, and limited download attempts.
The Sellfy platform includes marketing and analytics tools to help you manage your online store. You can send email product updates and collect newsletter subscribers through the platform. With Sellfy, you can also offer discount codes and product upsells, as well as create and track Facebook and Twitter ads for your store. The software's analytics dashboard will help you track your best-performing products, generated revenue, traffic channels, top locations, and overall store performance.
To expand functionality and make your e-commerce store run more efficiently, Sellfy offers several integrations. Google Analytics and Webhooks, as well as integrations with Patreon and Facebook Live Chat, are just a few of the options available. Sellfy allows you to connect to Zapier, which gives you access to hundreds of third-party apps, including tools like Mailchimp, Trello, Salesforce, and more.
The free plan comes with:
Starter plan comes with:
The business plan comes with:
The premium plan comes with:
Sellfy has its benefits and downsides, but fortunately, the pros outweigh the cons.
In this article, we have taken a look at some of the biggest benefits associated with using sellfy for eCommerce. Once you compare these benefits to what you get with other platforms such as Shopify, you should find that it is worth your time to consider sellfy for your business. After reading this article all of your questions will be solved but if you have still some questions let me know in the comment section below, I will be happy to answer your questions.
Note: This article contains affiliate links which means we make a small commission if you buy sellfy premium plan from our link.
SEMrush and Ahrefs are among
the most popular tools in the SEO industry. Both companies have been in
business for years and have thousands of customers per month.
If you're a professional SEO or trying to do digital
marketing on your own, at some point you'll likely consider using a tool to
help with your efforts. Ahrefs and SEMrush are two names that will likely
appear on your shortlist.
In this guide, I'm going to help you learn more about these SEO tools and how to choose the one that's best for your purposes.
What is SEMrush?
SEMrush is a popular SEO tool with a wide range of
features—it's the leading competitor research service for online marketers.
SEMrush's SEO Keyword Magic tool offers over 20 billion Google-approved
keywords, which are constantly updated and it's the largest keyword database.
The program was developed in 2007 as SeoQuake is a
small Firefox extension
Features
Ahrefs is a leading SEO platform that offers a set of
tools to grow your search traffic, research your competitors, and monitor your
niche. The company was founded in 2010, and it has become a popular choice
among SEO tools. Ahrefs has a keyword index of over 10.3 billion keywords and
offers accurate and extensive backlink data updated every 15-30 minutes and it
is the world's most extensive backlink index database.
Features
Direct Comparisons: Ahrefs vs SEMrush
Now that you know a little more about each tool, let's
take a look at how they compare. I'll analyze each tool to see how they differ
in interfaces, keyword research resources, rank tracking, and competitor
analysis.
User Interface
Ahrefs and SEMrush both offer comprehensive information
and quick metrics regarding your website's SEO performance. However, Ahrefs
takes a bit more of a hands-on approach to getting your account fully set up,
whereas SEMrush's simpler dashboard can give you access to the data you need
quickly.
In this section, we provide a brief overview of the elements
found on each dashboard and highlight the ease with which you can complete
tasks.
AHREFS
The Ahrefs dashboard is less cluttered than that of
SEMrush, and its primary menu is at the very top of the page, with a search bar
designed only for entering URLs.
Additional features of the Ahrefs platform include:
SEMRUSH
When you log into the SEMrush Tool, you will find four
main modules. These include information about your domains, organic keyword
analysis, ad keyword, and site traffic.
You'll also find some other options like
Both Ahrefs and SEMrush have user-friendly dashboards,
but Ahrefs is less cluttered and easier to navigate. On the other hand, SEMrush
offers dozens of extra tools, including access to customer support resources.
When deciding on which dashboard to use, consider what
you value in the user interface, and test out both.
If you're looking to track your website's search engine
ranking, rank tracking features can help. You can also use them to monitor your
competitors.
Let's take a look at Ahrefs vs. SEMrush to see which
tool does a better job.
The Ahrefs Rank Tracker is simpler to use. Just type in
the domain name and keywords you want to analyze, and it spits out a report
showing you the search engine results page (SERP) ranking for each keyword you
enter.
Rank Tracker looks at the ranking performance of
keywords and compares them with the top rankings for those keywords. Ahrefs
also offers:
You'll see metrics that help you understand your
visibility, traffic, average position, and keyword difficulty.
It gives you an idea of whether a keyword would be
profitable to target or not.
SEMRush offers a tool called Position Tracking. This
tool is a project tool—you must set it up as a new project. Below are a few of
the most popular features of the SEMrush Position Tracking tool:
All subscribers are given regular data updates and
mobile search rankings upon subscribing
The platform provides opportunities to track several
SERP features, including Local tracking.
Intuitive reports allow you to track statistics for the
pages on your website, as well as the keywords used in those pages.
Identify pages that may be competing with each other
using the Cannibalization report.
Ahrefs is a more user-friendly option. It takes seconds
to enter a domain name and keywords. From there, you can quickly decide whether
to proceed with that keyword or figure out how to rank better for other
keywords.
SEMrush allows you to check your mobile rankings and
ranking updates daily, which is something Ahrefs does not offer. SEMrush also
offers social media rankings, a tool you won't find within the Ahrefs platform.
Both are good which one do you like let me know in the comment.
Keyword research is closely related to rank tracking,
but it's used for deciding which keywords you plan on using for future content
rather than those you use now.
When it comes to SEO, keyword research is the most
important thing to consider when comparing the two platforms.
The Ahrefs Keyword Explorer provides you with thousands
of keyword ideas and filters search results based on the chosen search engine.
Ahrefs supports several features, including:
SEMrush's Keyword Magic Tool has over 20 billion
keywords for Google. You can type in any keyword you want, and a list of
suggested keywords will appear.
The Keyword Magic Tool also lets you to:
Both of these tools offer keyword research features and
allow users to break down complicated tasks into something that can be
understood by beginners and advanced users alike.
If you're interested in keyword suggestions, SEMrush
appears to have more keyword suggestions than Ahrefs does. It also continues to
add new features, like the Keyword Gap tool and SERP Questions recommendations.
Both platforms offer competitor analysis tools,
eliminating the need to come up with keywords off the top of your head. Each
tool is useful for finding keywords that will be useful for your competition so
you know they will be valuable to you.
Ahrefs' domain comparison tool lets you compare up to five websites (your website and four competitors) side-by-side.it also shows you how your site is ranked against others with metrics such as backlinks, domain ratings, and more.
Use the Competing Domains section to see a list of your
most direct competitors, and explore how many keywords matches your competitors
have.
To find more information about your competitor, you can
look at the Site Explorer and Content Explorer tools and type in their URL
instead of yours.
SEMrush provides a variety of insights into your
competitors' marketing tactics. The platform enables you to research your
competitors effectively. It also offers several resources for competitor
analysis including:
Traffic Analytics helps you identify where your
audience comes from, how they engage with your site, what devices visitors use
to view your site, and how your audiences overlap with other websites.
SEMrush's Organic Research examines your website's
major competitors and shows their organic search rankings, keywords they are
ranking for, and even if they are ranking for any (SERP) features and more.
The Market Explorer search field allows you to type in
a domain and lists websites or articles similar to what you entered. Market
Explorer also allows users to perform in-depth data analytics on These
companies and markets.
SEMrush wins here because it has more tools dedicated to
competitor analysis than Ahrefs. However, Ahrefs offers a lot of functionality
in this area, too. It takes a combination of both tools to gain an advantage
over your competition.
When it comes to keyword data research, you will become
confused about which one to choose.
Consider choosing Ahrefs if you
Consider SEMrush if you:
Both tools are great. Choose the one which meets your
requirements and if you have any experience using either Ahrefs or SEMrush let
me know in the comment section which works well for you.
Are you looking for a new graphic design tool? Would you like to read a detailed review of Canva? As it's one of the tools I love using. I am also writing my first ebook using canva and publish it soon on my site you can download it is free. Let's start the review.
Canva has a web version and also a mobile app
Canva is a free graphic design web application that allows you to create invitations, business cards, flyers, lesson plans, banners, and more using professionally designed templates. You can upload your own photos from your computer or from Google Drive, and add them to Canva's templates using a simple drag-and-drop interface. It's like having a basic version of Photoshop that doesn't require Graphic designing knowledge to use. It’s best for nongraphic designers.
Canva is a great tool for small business owners, online entrepreneurs, and marketers who don’t have the time and want to edit quickly.
To create sophisticated graphics, a tool such as Photoshop can is ideal. To use it, you’ll need to learn its hundreds of features, get familiar with the software, and it’s best to have a good background in design, too.
Also running the latest version of Photoshop you need a high-end computer.
So here Canva takes place, with Canva you can do all that with drag-and-drop feature. It’s also easier to use and free. Also an even-more-affordable paid version is available for $12.95 per month.
The product is available in three plans: Free, Pro ($12.99/month per user or $119.99/year for up to 5 people), and Enterprise ($30 per user per month, minimum 25 people).
To get started on Canva, you will need to create an account by providing your email address, Google, Facebook or Apple credentials. You will then choose your account type between student, teacher, small business, large company, non-profit, or personal. Based on your choice of account type, templates will be recommended to you.
You can sign up for a free trial of Canva Pro, or you can start with the free version to get a sense of whether it’s the right graphic design tool for your needs.
When you sign up for an account, Canva will suggest different post types to choose from. Based on the type of account you set up you'll be able to see templates categorized by the following categories: social media posts, documents, presentations, marketing, events, ads, launch your business, build your online brand, etc.
Start by choosing a template for your post or searching for something more specific. Search by social network name to see a list of post types on each network.
Next, you can choose a template. Choose from hundreds of templates that are ready to go, with customizable photos, text, and other elements.
You can start your design by choosing from a variety of ready-made templates, searching for a template matching your needs, or working with a blank template.
Inside the Canva designer, the Elements tab gives you access to lines and shapes, graphics, photos, videos, audio, charts, photo frames, and photo grids.The search box on the Elements tab lets you search everything on Canva.
To begin with, Canva has a large library of elements to choose from. To find them, be specific in your search query. You may also want to search in the following tabs to see various elements separately:
The Photos tab lets you search for and choose from millions of professional stock photos for your templates.
You can replace the photos in our templates to create a new look. This can also make the template more suited to your industry.
You can find photos on other stock photography sites like pexel, pixabay and many more or simply upload your own photos.
When you choose an image, Canva’s photo editing features let you adjust the photo’s settings (brightness, contrast, saturation, etc.), crop, or animate it.
When you subscribe to Canva Pro, you get access to a number of premium features, including the Background Remover. This feature allows you to remove the background from any stock photo in library or any image you upload.
The Text tab lets you add headings, normal text, and graphical text to your design.
When you click on text, you'll see options to adjust the font, font size, color, format, spacing, and text effects (like shadows).
Canva Pro subscribers can choose from a large library of fonts on the Brand Kit or the Styles tab. Enterprise-level controls ensure that visual content remains on-brand, no matter how many people are working on it.
Create an animated image or video by adding audio to capture user’s attention in social news feeds.
If you want to use audio from another stock site or your own audio tracks, you can upload them in the Uploads tab or from the more option.
Want to create your own videos? Choose from thousands of stock video clips. You’ll find videos that range upto 2 minutes
You can upload your own videos as well as videos from other stock sites in the Uploads tab.
Once you have chosen a video, you can use the editing features in Canva to trim the video, flip it, and adjust its transparency.
On the Background tab, you’ll find free stock photos to serve as backgrounds on your designs. Change out the background on a template to give it a more personal touch.
The Styles tab lets you quickly change the look and feel of your template with just a click. And if you have a Canva Pro subscription, you can upload your brand’s custom colors and fonts to ensure designs stay on brand.
If you have a Canva Pro subscription, you’ll have a Logos tab. Here, you can upload variations of your brand logo to use throughout your designs.
With Canva, you can also create your own logos. Note that you cannot trademark a logo with stock content in it.
With Canva, free users can download and share designs to multiple platforms including Instagram, Facebook, Twitter, LinkedIn, Pinterest, Slack and Tumblr.
Canva Pro subscribers can create multiple post formats from one design. For example, you can start by designing an Instagram post, and Canva's Magic Resizer can resize it for other networks, Stories, Reels, and other formats.
Canva Pro subscribers can also use Canva’s Content Planner to post content on eight different accounts on Instagram, Facebook, Twitter, LinkedIn, Pinterest, Slack, and Tumblr.
Canva Pro allows you to work with your team on visual content. Designs can be created inside Canva, and then sent to your team members for approval. Everyone can make comments, edits, revisions, and keep track via the version history.
When it comes to printing your designs, Canva has you covered. With an extensive selection of printing options, they can turn your designs into anything from banners and wall art to mugs and t-shirts.
Canva Print is perfect for any business seeking to make a lasting impression. Create inspiring designs people will want to wear, keep, and share. Hand out custom business cards that leave a lasting impression on customers' minds.
The Canva app is available on the Apple App Store and Google Play. The Canva app has earned a 4.9 out of five star rating from over 946.3K Apple users and a 4.5 out of five star rating from over 6,996,708 Google users.
In addition to mobile apps, you can use Canva’s integration with other Internet services to add images and text from sources like Google Maps, Emojis, photos from Google Drive and Dropbox, YouTube videos, Flickr photos, Bitmojis, and other popular visual content elements.
In general, Canva is an excellent tool for those who need simple images for projects. If you are a graphic designer with experience, you will find Canva’s platform lacking in customization and advanced features – particularly vectors. But if you have little design experience, you will find Canva easier to use than advanced graphic design tools like Adobe Photoshop or Illustrator for most projects. If you have any queries let me know in the comments section.
If you are looking for the best wordpress plugins, then you are at the right place. Here is the list of best wordpress plugins that you should use in your blog to boost SEO, strong your security and know every aspects of your blog . Although creating a good content is one factor but there are many wordpress plugins that perform different actions and add on to your success. So let's start
Those users who are serious about SEO, Yoast SEO will do the work for them to reach their goals. All they need to do is select a keyword, and the plugin will then optimize your page according to the specified keyword
Yoast offers many popular SEO WordPress plugin functions. It gives you real-time page analysis to optimize your content, images, meta descriptions, titles, and kewords. Yoast also checks the length of your sentences and paragraphs, whether you’re using enough transition words or subheadings, how often you use passive voice, and so on. Yoast tells Google whether or not to index a page or a set of pages too.
A website running WordPress can put a lot of strain on a server, which increases the chances that the website will crash and harm your business. To avoid such an unfortunate situation and ensure that all your pages load quickly, you need a caching plugin like WP Rocket.
WP Rocket plugin designed to increases your website speed. Instead of waiting for pages to be saved to cache, WP Rocket turns on desired caching settings, like page cache and gzip compression. The plugin also activates other features, such as CDN support and llazy image loadding, to enhance your site speed.
Wordfence Security is a WordPress firewall and security scanner that keeps your site safe from malicious hackers, spam, and other online threats. This Plugin comes with a web application firewall (WAF) called tthread Defence Feed that helps to prevents brute force attacks by ensuring you set stronger passwords and limiting login attempts. It searches for malware and compares code, theme, and plugin files with the records in the WordPress.org repository to verify their integrity and reports changes to you.
Wordfence security scanner provides you with actionable insights into your website's security status and will alert you to any potential threats, keeping it safe and secure. It also includes login security features that let you activate reCAPTCHA and two-factor authentication for your website.
Akismet can help prevent spam from appearing on your site. Every day, it automatically checks every comment against a global database of spam to block malicious content. With Akismet, you also won’t have to worry about innocent comments being caught by the filter or false positives. You can simply tell Akismet about those and it will get better over time. It also checks your contact form submissions against its global spam database and weed out unnecessary fake information.
Contact Form 7 is a plug-in that allows you to create contact forms that make it easy for your users to send messages to your site. The plug-in was developed by Takayuki Miyoshi and lets you create multiple contact forms on the same site; it also integrates Akismet spam filtering and lets you customize the styling and fields that you want to use in the form. The plug-in provides CAPTCHA and Ajax submitting.
When you’re looking for an easy way to manage your Google Analytics-related web tracking services, Monster Insights can help. You can add, customize, and integrate Google Analytics data with ease so you’ll be able to see how every webpage performs, which online campaigns bring in the most traffic, and which content readers engage with the most. It’s same as Google Analytics
It is a powerful tool to keep track of your traffic stats. With it, you can view stats for your active sessions, conversions, and bounce rates. You’ll also be able to see your total revenue, the products you sell, and how your site is performing when it comes to referrals.
MonsterInsights offers a free plan that includes basic Google Analytics integration, data insights, and user activity metrics.
Pretty Links is a powerful WordPress plugin that enables you to easily cloak affiliate links on your websiteIt even allows you to easily redirect visitors based on a specific request, including permanent 301 and temporary 302/307 redirects.
Pretty links also helps you to automatically shorten your url for your post and pages.
You can also enable auto-linking feature to automatically add affiliate links for certain keywords
We hope you’ve found this article useful. We appreciate you reading and welcome your feedback if you have it.
Ginger VS Grammarly: When it comes to grammar checkers, Ginger and Grammarly are two of the most popular choices on the market. This article aims to highlight the specifics of each one so that you can make a more informed decision about the one you'll use.
If you are a writer, you must have heard of Grammarly before. Grammarly has over 10M users across the globe, it's probably the most popular AI writing enhancement tool, without a doubt. That's why there's a high chance that you already know about Grammarly.
But today we are going to do a comparison between Ginger and Grammarly, So let's define Grammarly here. Like Ginger, Grammarly is an AI writing assistant that checks for grammatical errors, spellings, and punctuation. The free version covers the basics like identifying grammar and spelling mistakes
While the Premium version offers a lot more functionality, it detects plagiarism in your content, suggests word choice, or adds fluency to it.
Ginger is a writing enhancement tool that not only catches typos and grammatical mistakes but also suggests content improvements. As you type, it picks up on errors then shows you what’s wrong, and suggests a fix. It also provides you with synonyms and definitions of words and allows you to translate your text into dozens of languages.
In addition, the program provides a text reader, so you can gauge your writing’s conversational tone.
Grammarly and Ginger are two popular grammar checker software brands that help you to become a better writer. But if you’re undecided about which software to use, consider these differences:
Grammarly Score: 7/10
Ginger:4/10
So Grammarly wins here.
For companies with three or more employees, the Business plan costs $12.50/month for each member of your team.
Ginger Wins Here
While both writing assistants are fantastic in their ways, you need to choose the one you want.
For example, go for Grammarly if you want a plagiarism tool included.
Choose Ginger if you want to write in languages other than English. I will to the differences for you in order to make the distinctions clearer.
Which one you like let me know in the comments section also give your opinions in the comments section below.
Andrew Ng has serious street cred in artificial intelligence. He pioneered the use of graphics processing units (GPUs) to train deep learning models in the late 2000s with his students at Stanford University, cofounded Google Brain in 2011, and then served for three years as chief scientist for Baidu, where he helped build the Chinese tech giant’s AI group. So when he says he has identified the next big shift in artificial intelligence, people listen. And that’s what he told IEEE Spectrum in an exclusive Q&A.
Ng’s current efforts are focused on his company Landing AI, which built a platform called LandingLens to help manufacturers improve visual inspection with computer vision. He has also become something of an evangelist for what he calls the data-centric AI movement, which he says can yield “small data” solutions to big issues in AI, including model efficiency, accuracy, and bias.
Andrew Ng on...
The great advances in deep learning over the past decade or so have been powered by ever-bigger models crunching ever-bigger amounts of data. Some people argue that that’s an unsustainable trajectory. Do you agree that it can’t go on that way?
Andrew Ng: This is a big question. We’ve seen foundation models in NLP [natural language processing]. I’m excited about NLP models getting even bigger, and also about the potential of building foundation models in computer vision. I think there’s lots of signal to still be exploited in video: We have not been able to build foundation models yet for video because of compute bandwidth and the cost of processing video, as opposed to tokenized text. So I think that this engine of scaling up deep learning algorithms, which has been running for something like 15 years now, still has steam in it. Having said that, it only applies to certain problems, and there’s a set of other problems that need small data solutions.
When you say you want a foundation model for computer vision, what do you mean by that?
Ng: This is a term coined by Percy Liang and some of my friends at Stanford to refer to very large models, trained on very large data sets, that can be tuned for specific applications. For example, GPT-3 is an example of a foundation model [for NLP]. Foundation models offer a lot of promise as a new paradigm in developing machine learning applications, but also challenges in terms of making sure that they’re reasonably fair and free from bias, especially if many of us will be building on top of them.
What needs to happen for someone to build a foundation model for video?
Ng: I think there is a scalability problem. The compute power needed to process the large volume of images for video is significant, and I think that’s why foundation models have arisen first in NLP. Many researchers are working on this, and I think we’re seeing early signs of such models being developed in computer vision. But I’m confident that if a semiconductor maker gave us 10 times more processor power, we could easily find 10 times more video to build such models for vision.
Having said that, a lot of what’s happened over the past decade is that deep learning has happened in consumer-facing companies that have large user bases, sometimes billions of users, and therefore very large data sets. While that paradigm of machine learning has driven a lot of economic value in consumer software, I find that that recipe of scale doesn’t work for other industries.
It’s funny to hear you say that, because your early work was at a consumer-facing company with millions of users.
Ng: Over a decade ago, when I proposed starting the Google Brain project to use Google’s compute infrastructure to build very large neural networks, it was a controversial step. One very senior person pulled me aside and warned me that starting Google Brain would be bad for my career. I think he felt that the action couldn’t just be in scaling up, and that I should instead focus on architecture innovation.
“In many industries where giant data sets simply don’t exist, I think the focus has to shift from big data to good data. Having 50 thoughtfully engineered examples can be sufficient to explain to the neural network what you want it to learn.”
—Andrew Ng, CEO & Founder, Landing AI
I remember when my students and I published the first NeurIPS workshop paper advocating using CUDA, a platform for processing on GPUs, for deep learning—a different senior person in AI sat me down and said, “CUDA is really complicated to program. As a programming paradigm, this seems like too much work.” I did manage to convince him; the other person I did not convince.
I expect they’re both convinced now.
Ng: I think so, yes.
Over the past year as I’ve been speaking to people about the data-centric AI movement, I’ve been getting flashbacks to when I was speaking to people about deep learning and scalability 10 or 15 years ago. In the past year, I’ve been getting the same mix of “there’s nothing new here” and “this seems like the wrong direction.”
How do you define data-centric AI, and why do you consider it a movement?
Ng: Data-centric AI is the discipline of systematically engineering the data needed to successfully build an AI system. For an AI system, you have to implement some algorithm, say a neural network, in code and then train it on your data set. The dominant paradigm over the last decade was to download the data set while you focus on improving the code. Thanks to that paradigm, over the last decade deep learning networks have improved significantly, to the point where for a lot of applications the code—the neural network architecture—is basically a solved problem. So for many practical applications, it’s now more productive to hold the neural network architecture fixed, and instead find ways to improve the data.
When I started speaking about this, there were many practitioners who, completely appropriately, raised their hands and said, “Yes, we’ve been doing this for 20 years.” This is the time to take the things that some individuals have been doing intuitively and make it a systematic engineering discipline.
The data-centric AI movement is much bigger than one company or group of researchers. My collaborators and I organized a data-centric AI workshop at NeurIPS, and I was really delighted at the number of authors and presenters that showed up.
You often talk about companies or institutions that have only a small amount of data to work with. How can data-centric AI help them?
Ng: You hear a lot about vision systems built with millions of images—I once built a face recognition system using 350 million images. Architectures built for hundreds of millions of images don’t work with only 50 images. But it turns out, if you have 50 really good examples, you can build something valuable, like a defect-inspection system. In many industries where giant data sets simply don’t exist, I think the focus has to shift from big data to good data. Having 50 thoughtfully engineered examples can be sufficient to explain to the neural network what you want it to learn.
When you talk about training a model with just 50 images, does that really mean you’re taking an existing model that was trained on a very large data set and fine-tuning it? Or do you mean a brand new model that’s designed to learn only from that small data set?
Ng: Let me describe what Landing AI does. When doing visual inspection for manufacturers, we often use our own flavor of RetinaNet. It is a pretrained model. Having said that, the pretraining is a small piece of the puzzle. What’s a bigger piece of the puzzle is providing tools that enable the manufacturer to pick the right set of images [to use for fine-tuning] and label them in a consistent way. There’s a very practical problem we’ve seen spanning vision, NLP, and speech, where even human annotators don’t agree on the appropriate label. For big data applications, the common response has been: If the data is noisy, let’s just get a lot of data and the algorithm will average over it. But if you can develop tools that flag where the data’s inconsistent and give you a very targeted way to improve the consistency of the data, that turns out to be a more efficient way to get a high-performing system.
“Collecting more data often helps, but if you try to collect more data for everything, that can be a very expensive activity.”
—Andrew Ng
For example, if you have 10,000 images where 30 images are of one class, and those 30 images are labeled inconsistently, one of the things we do is build tools to draw your attention to the subset of data that’s inconsistent. So you can very quickly relabel those images to be more consistent, and this leads to improvement in performance.
Could this focus on high-quality data help with bias in data sets? If you’re able to curate the data more before training?
Ng: Very much so. Many researchers have pointed out that biased data is one factor among many leading to biased systems. There have been many thoughtful efforts to engineer the data. At the NeurIPS workshop, Olga Russakovsky gave a really nice talk on this. At the main NeurIPS conference, I also really enjoyed Mary Gray’s presentation, which touched on how data-centric AI is one piece of the solution, but not the entire solution. New tools like Datasheets for Datasets also seem like an important piece of the puzzle.
One of the powerful tools that data-centric AI gives us is the ability to engineer a subset of the data. Imagine training a machine-learning system and finding that its performance is okay for most of the data set, but its performance is biased for just a subset of the data. If you try to change the whole neural network architecture to improve the performance on just that subset, it’s quite difficult. But if you can engineer a subset of the data you can address the problem in a much more targeted way.
When you talk about engineering the data, what do you mean exactly?
Ng: In AI, data cleaning is important, but the way the data has been cleaned has often been in very manual ways. In computer vision, someone may visualize images through a Jupyter notebook and maybe spot the problem, and maybe fix it. But I’m excited about tools that allow you to have a very large data set, tools that draw your attention quickly and efficiently to the subset of data where, say, the labels are noisy. Or to quickly bring your attention to the one class among 100 classes where it would benefit you to collect more data. Collecting more data often helps, but if you try to collect more data for everything, that can be a very expensive activity.
For example, I once figured out that a speech-recognition system was performing poorly when there was car noise in the background. Knowing that allowed me to collect more data with car noise in the background, rather than trying to collect more data for everything, which would have been expensive and slow.
What about using synthetic data, is that often a good solution?
Ng: I think synthetic data is an important tool in the tool chest of data-centric AI. At the NeurIPS workshop, Anima Anandkumar gave a great talk that touched on synthetic data. I think there are important uses of synthetic data that go beyond just being a preprocessing step for increasing the data set for a learning algorithm. I’d love to see more tools to let developers use synthetic data generation as part of the closed loop of iterative machine learning development.
Do you mean that synthetic data would allow you to try the model on more data sets?
Ng: Not really. Here’s an example. Let’s say you’re trying to detect defects in a smartphone casing. There are many different types of defects on smartphones. It could be a scratch, a dent, pit marks, discoloration of the material, other types of blemishes. If you train the model and then find through error analysis that it’s doing well overall but it’s performing poorly on pit marks, then synthetic data generation allows you to address the problem in a more targeted way. You could generate more data just for the pit-mark category.
“In the consumer software Internet, we could train a handful of machine-learning models to serve a billion users. In manufacturing, you might have 10,000 manufacturers building 10,000 custom AI models.”
—Andrew Ng
Synthetic data generation is a very powerful tool, but there are many simpler tools that I will often try first. Such as data augmentation, improving labeling consistency, or just asking a factory to collect more data.
To make these issues more concrete, can you walk me through an example? When a company approaches Landing AI and says it has a problem with visual inspection, how do you onboard them and work toward deployment?
Ng: When a customer approaches us we usually have a conversation about their inspection problem and look at a few images to verify that the problem is feasible with computer vision. Assuming it is, we ask them to upload the data to the LandingLens platform. We often advise them on the methodology of data-centric AI and help them label the data.
One of the foci of Landing AI is to empower manufacturing companies to do the machine learning work themselves. A lot of our work is making sure the software is fast and easy to use. Through the iterative process of machine learning development, we advise customers on things like how to train models on the platform, when and how to improve the labeling of data so the performance of the model improves. Our training and software supports them all the way through deploying the trained model to an edge device in the factory.
How do you deal with changing needs? If products change or lighting conditions change in the factory, can the model keep up?
Ng: It varies by manufacturer. There is data drift in many contexts. But there are some manufacturers that have been running the same manufacturing line for 20 years now with few changes, so they don’t expect changes in the next five years. Those stable environments make things easier. For other manufacturers, we provide tools to flag when there’s a significant data-drift issue. I find it really important to empower manufacturing customers to correct data, retrain, and update the model. Because if something changes and it’s 3 a.m. in the United States, I want them to be able to adapt their learning algorithm right away to maintain operations.
In the consumer software Internet, we could train a handful of machine-learning models to serve a billion users. In manufacturing, you might have 10,000 manufacturers building 10,000 custom AI models. The challenge is, how do you do that without Landing AI having to hire 10,000 machine learning specialists?
So you’re saying that to make it scale, you have to empower customers to do a lot of the training and other work.
Ng: Yes, exactly! This is an industry-wide problem in AI, not just in manufacturing. Look at health care. Every hospital has its own slightly different format for electronic health records. How can every hospital train its own custom AI model? Expecting every hospital’s IT personnel to invent new neural-network architectures is unrealistic. The only way out of this dilemma is to build tools that empower the customers to build their own models by giving them tools to engineer the data and express their domain knowledge. That’s what Landing AI is executing in computer vision, and the field of AI needs other teams to execute this in other domains.
Is there anything else you think it’s important for people to understand about the work you’re doing or the data-centric AI movement?
Ng: In the last decade, the biggest shift in AI was a shift to deep learning. I think it’s quite possible that in this decade the biggest shift will be to data-centric AI. With the maturity of today’s neural network architectures, I think for a lot of the practical applications the bottleneck will be whether we can efficiently get the data we need to develop systems that work well. The data-centric AI movement has tremendous energy and momentum across the whole community. I hope more researchers and developers will jump in and work on it.
This article appears in the April 2022 print issue as “Andrew Ng, AI Minimalist.”
RSS Rabbit links users to publicly available RSS entries.
Vet every link before clicking! The creators accept no responsibility for the contents of these entries.
Relevant
Fresh
Convenient
Agile
We're not prepared to take user feedback yet. Check back soon!