logo RSS Rabbit quadric
News that matters, fast.
Good luck, have news.
Happy scrolling!

Categories



Date/Time of Last Update: Mon Nov 28 09:00:31 2022 UTC




********** LAW **********
return to top



A Special Prosecutor Found Kevin Johnson’s Case Was Tainted by Racism. Missouri Is About to Kill Him Anyway.
Sun, 27 Nov 2022 15:15:12 +0000

Kevin Johnson is facing execution for killing a cop when he was 19. A special prosecutor says his sentence should be vacated.

The post A Special Prosecutor Found Kevin Johnson’s Case Was Tainted by Racism. Missouri Is About to Kill Him Anyway. appeared first on The Intercept.


Match ID: 0 Score: 40.00 source: theintercept.com age: 0 days
qualifiers: 25.00 federal judge(|s), 15.00 judge

A Criminal Ratted Out His Friend to the FBI. Now He's Trying to Make Amends.
Sat, 26 Nov 2022 12:00:23 +0000

The FBI paid a convicted sex offender $90,000 to set up his friend and his friend’s mentally ill buddy in a terrorism sting.

The post A Criminal Ratted Out His Friend to the FBI. Now He’s Trying to Make Amends. appeared first on The Intercept.


Match ID: 1 Score: 40.00 source: theintercept.com age: 1 day
qualifiers: 25.00 federal judge(|s), 15.00 judge

I Experienced Jack Smith's Zeal Firsthand. Will Trump Get the Same Treatment?
Wed, 23 Nov 2022 16:15:01 +0000

His handling of the ex-president will show whether Smith really is an aggressive prosecutor — or just aggressive against the powerless.

The post I Experienced Jack Smith’s Zeal Firsthand. Will Trump Get the Same Treatment? appeared first on The Intercept.


Match ID: 2 Score: 28.57 source: theintercept.com age: 4 days
qualifiers: 17.86 federal judge(|s), 10.71 judge

The Data Guy Who Got the Midterms Right
Thu, 24 Nov 2022 03:43:32 +0000

Tom Bonier of TargetSmart on how Republican polls were able to skew media predictions.

The post The Data Guy Who Got the Midterms Right appeared first on The Intercept.


Match ID: 3 Score: 17.86 source: theintercept.com age: 4 days
qualifiers: 10.71 judge, 7.14 congress

‘We need a breakthrough deal on biodiversity’: can Montreal summit deliver for nature?
Sun, 27 Nov 2022 10:00:05 GMT

In 201o, politicians pledged to halt devastation of Earth’s wildlife. Since then, no progress has been made. And despite glimmers of hope, prospects look grim for next month’s top-level meeting in Canada

In 2010, politicians and scientists made a pledge to halt the devastating reductions in wildlife numbers that had been denuding the planet of its animals and sea creatures for the previous century. At that time, wild animal populations were declining by about 2.5% a year on average as habitat loss, invasive species, pollution, climate change and disease ravaged habitats and lives. Such losses must end within a decade, it was agreed.

Next month, conservationists and politicians will meet in Montreal for this year’s biodiversity summit where they will judge what progress has been made over the past 12 years. “It will be an easy assessment to make,” said Andrew Terry, the director of conservation at ZSL, the Zoological Society of London. “Absolutely no progress has been made. Populations have continued to decline at a rate of around 2.5% a year. We haven’t slowed the destruction in the slightest. Our planet’s biodiversity is now in desperate peril as a result.”

Continue reading...
Match ID: 4 Score: 15.00 source: www.theguardian.com age: 0 days
qualifiers: 15.00 judge

Brazil judge fines Bolsonaro allies millions after ‘bad faith’ election challenge
Thu, 24 Nov 2022 02:13:23 GMT

Head of Brazil's electoral court rejects claim from outgoing president’s coalition that said voting machines malfunctioned

The head of Brazil’s electoral court has rejected an attempt by outgoing president Jair Bolsonaro’s party to overturn the results of October’s run-off election, which he lost.

Alexandre de Moraes, a supreme court justice, also fined the parties in Bolsonaro’s coalition 22.9m reais ($4.3m) for what the court described as bad faith litigation.

Continue reading...
Match ID: 5 Score: 10.71 source: www.theguardian.com age: 4 days
qualifiers: 10.71 judge

Georgia Supreme Court reinstates six-week abortion ban
Wed, 23 Nov 2022 15:59:18 EST
The ban had been overturned one week earlier by a Fulton County judge who ruled it "unconstitutional."
Match ID: 6 Score: 10.71 source: www.washingtonpost.com age: 4 days
qualifiers: 10.71 judge

Democrats press for assault weapons ban, other gun laws after new mass shootings
Sun, 27 Nov 2022 18:03:21 EST
“The idea we still allow semi-automatic weapons to be purchased is sick. Just sick,” President Biden said after recent mass shootings at an LGBTQ club in Colorado Springs and a Walmart in Chesapeake, Va.
Match ID: 7 Score: 10.00 source: www.washingtonpost.com age: 0 days
qualifiers: 10.00 congress

Xi unlikely to tolerate dissent as momentous protests shake China
Sun, 27 Nov 2022 17:55:55 GMT

Chinese leader will see widespread demonstrations against zero-Covid policy as threat to CCP’s authority

Just five weeks after being elected to a historic third term, President Xi Jinping suddenly faces cracks in the facade of unchallenged authority that he so successfully presented to the world at the 20th national congress of the Chinese Communist party.

For groups of protesters, apparently without central coordination, to take to the streets across China and to social media, and for some then explicitly to call for Xi and the Communist party to stand aside, is a seismic shock.

Continue reading...
Match ID: 8 Score: 10.00 source: www.theguardian.com age: 0 days
qualifiers: 10.00 congress

The US Congress Is Starting to Question This Whole Crypto Thing
Sun, 27 Nov 2022 12:00:00 +0000
Think Washington lawmakers have what it takes to tackle the volatile world of cryptocurrencies? Neither do they.
Match ID: 9 Score: 10.00 source: www.wired.com age: 0 days
qualifiers: 10.00 congress

Founder ran FTX as “personal fiefdom”; many assets stolen or missing, court hears
Wed, 23 Nov 2022 17:36:09 +0000
FTX "was run as a personal fiefdom of Sam Bankman-Fried," company lawyer says.
Match ID: 10 Score: 7.14 source: arstechnica.com age: 4 days
qualifiers: 7.14 congress

Supreme Court clears way for Trump tax returns to go to Congress
Wed, 23 Nov 2022 11:18:52 EST
Lawmakers say they need Donald Trump’s tax returns from his time in office to help evaluate the effectiveness of annual presidential audits -- a premise Trump rejects.
Match ID: 11 Score: 7.14 source: www.washingtonpost.com age: 4 days
qualifiers: 7.14 congress

Cowen sees rising risk of rail strike
Wed, 23 Nov 2022 13:20:29 GMT

Cowen analysts on Wednesday said the possibility of the first U.S. rail strike since 1991 is currently at about 30% after statements earlier this week from union members. "Channel checks suggest that customers are already pulling freight off the rails as strike risk rises," analyst Jason Seidl said in a research note. Back in September when a potential work stoppage had loomed ahead of the midterm elections, Seidl projected a roughly 15% chance of a rail strike. While Congress appears motivated to intervene if a strike takes place, Seidl said he's seeing "clear stubbornness from both sides that is likely increasing animosity" and that strike sentiment appears to be growing and shippers are taking action. The president of the Association of American Railroads said Monday, "The window continues to narrow as deadlines rapidly approach" and that the companies are ready to reach new agreements with unions. The association's members work at Warren Buffett's BNSF, Union Pacific Corp. and Norfolk Southern .

Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.


Match ID: 12 Score: 7.14 source: www.marketwatch.com age: 4 days
qualifiers: 7.14 congress

Was the Killing of a Migrant by a Former ICE Warden a Hate Crime or a Terrible Accident?
Sat, 19 Nov 2022 11:00:49 +0000

At Fivemile Tank, a watering hole in the bleak desert of West Texas, two men pulled up in a truck. One aimed a gun into the brush.

The post Was the Killing of a Migrant by a Former ICE Warden a Hate Crime or a Terrible Accident? appeared first on The Intercept.


Match ID: 13 Score: 7.14 source: theintercept.com age: 8 days
qualifiers: 3.57 federal judge(|s), 2.14 judge, 1.43 congress

Biden has appointed many judges but hasn’t recast the bench like Trump
Mon, 21 Nov 2022 10:46:39 EST
By keeping their Senate majority, Democrats can keep confirming judges. But thanks to the GOP’s 2015-2016 blockade, the makeup of the courts hasn’t shifted as substantially.
Match ID: 14 Score: 6.43 source: www.washingtonpost.com age: 6 days
qualifiers: 6.43 judge

House Members Push for U.N. Oversight of Yemen Atrocities
Mon, 21 Nov 2022 20:00:12 +0000

Reps. Ilhan Omar and Joaquin Castro are leading the call to renew international oversight of atrocities committed in the Saudi-led war in Yemen.

The post House Members Push for U.N. Oversight of Yemen Atrocities appeared first on The Intercept.


Match ID: 15 Score: 4.29 source: theintercept.com age: 6 days
qualifiers: 4.29 congress

How the Graphical User Interface Was Invented
Sun, 20 Nov 2022 20:00:00 +0000


Mice, windows, icons, and menus: these are the ingredients of computer interfaces designed to be easy to grasp, simplicity itself to use, and straightforward to describe. The mouse is a pointer. Windows divide up the screen. Icons symbolize application programs and data. Menus list choices of action.

But the development of today’s graphical user interface was anything but simple. It took some 30 years of effort by engineers and computer scientists in universities, government laboratories, and corporate research groups, piggybacking on each other’s work, trying new ideas, repeating each other’s mistakes.


This article was first published as “Of Mice and menus: designing the user-friendly interface.” It appeared in the September 1989 issue of IEEE Spectrum. A PDF version is available on IEEE Xplore. The photographs and diagrams appeared in the original print version.


Throughout the 1970s and early 1980s, many of the early concepts for windows, menus, icons, and mice were arduously researched at Xerox Corp.’s Palo Alto Research Center (PARC), Palo Alto, Calif. In 1973, PARC developed the prototype Alto, the first of two computers that would prove seminal in this area. More than 1200 Altos were built and tested. From the Alto’s concepts, starting in 1975, Xerox’s System Development Department then developed the Star and introduced it in 1981—the first such user-friendly machine sold to the public.

In 1984, the low-cost Macintosh from Apple Computer Inc., Cupertino, Calif., brought the friendly interface to thousands of personal computer users. During the next five years, the price of RAM chips fell enough to accommodate the huge memory demands of bit-mapped graphics, and the Mac was followed by dozens of similar interfaces for PCs and workstations of all kinds. By now, application programmers are becoming familiar with the idea of manipulating graphic objects.

The Mac’s success during the 1980s spurred Apple Computer to pursue legal action over ownership of many features of the graphical user interface. Suits now being litigated could assign those innovations not to the designers and their companies, but to those who first filed for legal protection on them.

The GUI started with Sketchpad


The grandfather of the graphical user interface was Sketchpad [see photograph]. Massachusetts Institute of Technology student Ivan E. Sutherland built it in 1962 as a Ph.D. thesis at MIT’s Lincoln Laboratory in Lexington, Mass. Sketchpad users could not only draw points, line segments, and circular arcs on a cathode ray tube (CRT) with a light pen—they could also assign constraints to, and relationships among, whatever they drew.

Arcs could have a specified diameter, lines could be horizontal or vertical, and figures could be built up from combinations of elements and shapes. Figures could be moved, copied, shrunk, expanded, and rotated, with their constraints (shown as onscreen icons) dynamically preserved. At a time when a CRT monitor was a novelty in itself, the idea that users could interactively create objects by drawing on a computer was revolutionary.


Man sitting in front of a round cathode ray display with a white square and triangle on a black background

Moreover, to zoom in on objects, Sutherland wrote the first window-drawing program, which required him to come up with the first clipping algorithm. Clipping is a software routine that calculates which part of a graphic object is to be displayed and displays only that part on the screen. The program must calculate where a line is to be drawn, compare that position to the coordinates of the window in use, and prevent the display of any line segment whose coordinates fall outside the window.

Though films of Sketchpad in operation were widely shown in the computer research community, Sutherland says today that there was little immediate fallout from the project. Running on MIT’s TX-2 mainframe, it demanded too much computing power to be practical for individual use. Many other engineers, however, see Sketchpad’s design and algorithms as a primary influence on an entire generation of research into user interfaces.

The origin of the computer mouse


The light pens used to select areas of the screen by interactive computer systems of the 1950s and 1960s—including Sketchpad—had drawbacks. To do the pointing, the user’s arm had to be lifted up from the table, and after a while that got tiring. Picking up the pen required fumbling around on the table or, if it had a holder, taking the time after making a selection to put it back.

Sensing an object with a light pen was straightforward: the computer displayed spots of light on the screen and interrogated the pen as to whether it sensed a spot, so the program always knew just what was being displayed. Locating the position of the pen on the screen required more sophisticated techniques—like displaying a cross pattern of nine points on the screen, then moving the cross until it centered on the light pen.

In 1964, Douglas Engelbart, a research project leader at SRI International in Menlo Park, Calif., tested all the commercially available pointing devices, from the still-popular light pen to a joystick and a Graphicon (a curve-tracing device that used a pen mounted on the arm of a potentiometer). But he felt the selection failed to cover the full spectrum of possible pointing devices, and somehow he should fill in the blanks.

Then he remembered a 1940s college class he had taken that covered the use of a planimeter to calculate area. (A planimeter has two arms, with a wheel on each. The wheels can roll only along their axes; when one of them rolls, the other must slide.)

If a potentiometer were attached to each wheel to monitor its rotation, he thought, a planimeter could be used as a pointing device. Engelbart explained his roughly sketched idea to engineer William English, who with the help of the SRI machine shop built what they quickly dubbed “the mouse.”



This first mouse was big because it used single-turn potentiometers: one rotation of the wheels had to be scaled to move a cursor from one side of the screen to the other. But it was simple to interface with the computer: the processor just read frequent samples of the potentiometer positioning signals through analog-to-digital converters.

The cursor moved by the mouse was easy to locate, since readings from the potentiometer determined the position of the cursor on the screen-unlike the light pen. But programmers for later windowing systems found that the software necessary to determine which object the mouse had selected was more complex than that for the light pen: they had to compare the mouse’s position with that of all the objects displayed onscreen.

The computer mouse gets redesigned—and redesigned again

Engelbart’s group at SRI ran controlled experiments with mice and other pointing devices, and the mouse won hands down. People adapted to it quickly, it was easy to grab, and it stayed where they put it. Still, Engelbart wanted to tinker with it. After experimenting, his group had concluded that the proper ratio of cursor movement to mouse movement was about 2:1, but he wanted to try varying that ratio—decreasing it at slow speeds and raising it at fast speeds—to improve user control of fine movements and speed up larger movements. Some modern mouse-control software incorporates this idea, including that of the Macintosh.

The mouse, still experimental at this stage, did not change until 1971. Several members of Engelbart’s group had moved to the newly established PARC, where many other researchers had seen the SRI mouse and the test report. They decided there was no need to repeat the tests; any experimental systems they designed would use mice.

Said English, “This was my second chance to build a mouse; it was obvious that it should be a lot smaller, and that it should be digital.” Chuck Thacker, then a member of the research staff, advised PARC to hire inventor Jack Hawley to build it.

Hawley decided the mouse should use shaft encoders, which measure position by a series of pulses, instead of potentiometers (both were covered in Engelbart’s 1970 patent), to eliminate the expensive analog-to-digital converters. The basic principle, of one wheel rolling while the other slid, was licensed from SRI.

The ball mouse was the “easiest patent I ever got. It took me five minutes to think of, half an hour to describe to the attorney, and I was done.”
—Ron Rider

In 1972, the mouse changed again. Ron Rider, now vice president of systems architecture at PARC but then a new arrival, said he was using the wheel mouse while an engineer made excuses for its asymmetric operation (one wheel dragging while one turned). “I suggested that they turn a trackball upside down, make it small, and use it as a mouse instead,” Rider told IEEE Spectrum. This device came to be known as the ball mouse. “Easiest patent I ever got,” Rider said. “It took me five minutes to think of, half an hour to describe to the attorney, and I was done.”

Defining terms


Bit map

The pixel pattern that makes up the graphic display on a computer screen.

Clicking

The motion of pressing a mouse button to Initiate an action by software; some actions require double-clicking.

Graphical user interface (GUI)

The combination of windowing displays, menus, icons, and a mouse that is increasingly used on personal computers and workstations.

Icon

An onscreen drawing that represents programs or data.

Menu

A list of command options currently available to the computer user; some stay onscreen, while pop-up or pull-down menus are requested by the user.

Mouse

A device whose motion across a desktop or other surface causes an on-screen cursor to move commensurately; today’s mice move on a ball and have one, two, or three buttons.

Raster display

A cathode ray tube on which Images are displayed as patterns of dots, scanned onto the screen sequentially in a predetermined pattern of lines.

Vector display

A cathode ray tube whose gun scans lines, or vectors, onto the screen phosphor.

Window

An area of a computer display, usually one of several, in which a particular program is executing.


In the PARC ball mouse design, the weight of the mouse is transferred to the ball by a swivel device and on one or two casters at the end of the mouse farthest from the wire “tail.” A prototype was built by Xerox’s Electronics Division in El Segundo, Calif., then redesigned by Hawley. The rolling ball turned two perpendicular shafts, with a drum on the end of each that was coated with alternating stripes of conductive and nonconductive material. As the drum turned, the stripes transmitted electrical impulses through metal wipers.

When Apple Computer decided in 1979 to design a mouse for its Lisa computer, the design mutated yet again. Instead of a metal ball held against the substrate by a swivel, Apple used a rubber ball whose traction depended on the friction of the rubber and the weight of the ball itself. Simple pads on the bottom of the case carried the weight, and optical scanners detected the motion of the internal wheels. The device had loose tolerances and few moving parts, so that it cost perhaps a quarter as much to build as previous ball mice.

How the computer mouse gained and lost buttons

The first, wooden, SRI mouse had only one button, to test the concept. The plastic batch of SRI mice bad three side-by-side buttons—all there was room for, Engelbart said. The first PARC mouse bad a column of three buttons-again, because that best fit the mechanical design. Today, the Apple mouse has one button, while the rest have two or three. The issue is no longer 1950—a standard 6-by-10-cm mouse could now have dozens of buttons—but human factors, and the experts have strong opinions.

Said English, now director of internationalization at Sun Microsystems Inc., Mountain View, Calif.: “Two or three buttons, that’s the debate. Apple made a bad choice when they used only one.” He sees two buttons as the minimum because two functions are basic to selecting an object: pointing to its start, then extending the motion to the end of the object.

William Verplank, a human factors specialist in the group that tested the graphical interface at Xerox from 1978 into the early 1980s, concurred. He told Spectrum that with three buttons, Alto users forgot which button did what. The group’s tests showed that one button was also confusing, because it required actions such as double-clicking to select and then open a file.

“We have agonizing videos of naive users struggling” with these problems, Verplank said. They concluded that for most users, two buttons (as used on the Star) are optimal, if a button means the same thing in every application. English experimented with one-button mice at PARC before concluding they were a bad idea.


“Two or three buttons, that’s the debate. Apple made a bad choice when they used only one.”
—William English


A computer monitor with a chunky white keyboard sitting on a desk

But many interface designers dislike multiple buttons, saying that double-clicking a single button to select an item is easier than remembering which button points and which extends. Larry Tesler, formerly a computer scientist at PARC, brought the one-button mouse to Apple, where he is now vice president of advanced technology. The company’s rationale is that to attract novices to its computers one button was as simple as it could get.

More than two million one-button Apple mice are now in use. The Xerox and Microsoft two-button mice are less common than either Apple’s ubiquitous one-button model or the three-button mice found on technical workstations. Dozens of companies manufacture mice today; most are slightly smaller than a pack of cigarettes, with minor variations in shape.

How windows first came to the computer screen


In 1962, Sketchpad could split its screen horizontally into two independent sections. One section could, for example, give a close-up view of the object in the other section. Researchers call Sketchpad the first example of tiled windows, which are laid out side by side. They differ from overlapping windows, which can be stacked on top of each other, or overlaid, obscuring all or part of the lower layers.

Windows were an obvious means of adding functionality to a small screen. In 1969, Engelbart equipped NLS (as the On-Line System he invented at SRI during the 1960s was known, to distinguish it from the Off-Line System known as FLS) with windows. They split the screen into multiple parts horizontally or vertically, and introduced cross-window editing with a mouse.

By 1972, led by researcher Alan Kay, the Smalltalk programming language group at Xerox PARC had implemented their version of windows. They were working with far different technology from Sutherland or Engelbart: by deciding that their images had to be displayed as dots on the screen, they led a move from vector to raster displays, to make it simple to map the assigned memory location of each of those spots. This was the bit map invented at PARC, and made viable during the 1980s by continual performance improvements in processor logic and memory speed.

Experimenting with bit-map manipulation, Smalltalk researcher Dan Ingalls developed the bit-block transfer procedure, known as BitBlt. The BitBlt software enabled application programs to mix and manipulate rectangular arrays of pixel values in on-screen or off-screen memory, or between the two, combining the pixel values and storing the result in the appropriate bit-map location.

BitBlt made it much easier to write programs to scroll a window (move an image through it), resize (enlarge or contract) it, and drag windows (move them from one location to another on screen). It led Kay to create overlapping windows. They were soon implemented by the Smalltalk group, but made clipping harder.

Some researchers question whether overlapping windows offer more benefits than tiled on the grounds that screens with overlapping windows become so messy the user gets lost.

In a tiling system, explained researcher Peter Deutsch, who worked with the Smalltalk group, the clipping borders are simply horizontal or vertical lines from one screen border to another, and software just tracks the location of those lines. But overlapping windows may appear anywhere on the screen, randomly obscuring bits and pieces of other windows, so that quite irregular regions must be clipped. Thus application software must constantly track which portions of their windows remain visible.

Some researchers still question whether overlapping windows offer more benefits than tiled, at least above a certain screen size, on the grounds that screens with overlapping windows become so messy the user gets lost. Others argue that overlapping windows more closely match users’ work patterns, since no one arranges the papers on their physical desktop in neat horizontal and vertical rows. Among software engineers, however, overlapping windows seem to have won for the user interface world.

So has the cut-and-paste editing model that Larry Tesler developed, first for the Gypsy text editor he wrote at PARC and later for Apple. Charles Irby—who worked on Xerox’s windows and is now vice president of development at Metaphor Computer Systems Inc., Mountain View, Calif.—noted, however, that cut-and-paste worked better for pure text-editing than for moving graphic objects from one application to another.

The origin of the computer menu bar


Menus—functions continuously listed onscreen that could be called into action with key combinations—were commonly used in defense computing by the 1960s. But it was only with the advent of BitBlt and windows that menus could be made to appear as needed and to disappear after use. Combined with a pointing device to indicate a user’s selection, they are now an integral part of the user-friendly interface: users no longer need to refer to manuals or memorize available options.

Instead, the choices can be called up at a moment’s notice whenever needed. And menu design has evolved. Some new systems use nested hierarchies of menus; others offer different menu versions—one with the most commonly used commands for novices, another with all available commands for the experienced user.

Among the first to test menus on demand was PARC researcher William Newman, in a program called Markup. Hard on his heels, the Smalltalk group built in pop-up menus that appeared on screen at the cursor site when the user pressed one of the mouse buttons.

Implementation was on the whole straightforward, recalled Deutsch. The one exception was determining whether the menu or the application should keep track of the information temporarily obscured by the menu. In the Smalltalk 76 version, the popup menu saved and restored the screen bits it overwrote. But in today’s multitasking systems, that would not work, because an application may change those bits without the menu’s knowledge. Such systems add another layer to the operating system: a display manager that tracks what is written where.

The production Xerox Star, in 1981, featured a further advance: a menu bar, essentially a row of words indicating available menus that could be popped up for each window. Human factors engineer Verplank recalled that the bar was at first located at the bottom of its window. But the Star team found users were more likely to associate a bar with the window below it, so it was moved to the top of its window.

Apple simplified things in its Lisa and Macintosh with a single bar placed at the top of the screen. This menu bar relates only to the window in use: the menus could be ‘‘pulled down” from the bar, to appear below it. Designer William D. Atkinson received a patent (assigned to Apple Computer) in August 1984 for this innovation.

One new addition that most user interface pioneers consider an advantage is the tear-off menu, which the user can move to a convenient spot on the screen and “pin” there, always visible for ready access.

Many windowing interfaces now offer command-key or keyboard alternatives for many commands as well. This return to the earliest of user interfaces—key combinations—neatly supplements menus, providing both ease of use for novices and for the less experienced, and speed for those who can type faster than they can point to a menu and click on a selection.

How the computer “icon” got its name


Sketchpad had on-screen graphic objects that represented constraints (for example, a rule that lines be the same length), and the Flex machine built in 1967 at the University of Utah by students Alan Kay and Ed Cheadle had squares that represented programs and data (like today’s computer “folders”). Early work on icons was also done by Bell Northern Research, Ottawa, Canada, stemming from efforts to replace the recently legislated bilingual signs with graphic symbols.

But the concept of the computer “icon” was not formalized until 1975. David Canfield Smith, a computer science graduate student at Stanford University in California, began work on his Ph.D. thesis in 1973. His advisor was PARC’s Kay, who suggested that he look at using the graphics power of the experimental Alto not just to display text, but rather to help people program.

David Canfield Smith took the term icon from the Russian Orthodox church, where an icon is more than an image, because it embodies properties of what it represents.

Smith took the term icon from the Russian Orthodox church, where an icon is more than an image, because it embodies properties of what it represents: a Russian icon of a saint is holy and is to be venerated. Smith’s computer icons contained all the properties of the programs and data represented, and therefore could be linked or acted on as if they were the real thing.

After receiving his Ph.D. in 1975, Smith joined Xerox in 1976 to work on Star development. The first thing he did, he said, was to recast his concept of icons in office terms. “I looked around my office and saw papers, folders, file cabinets, a telephone, and bookshelves, and it was an easy translation to icons,” he said.

Xerox researchers developed, tested, and revised icons for the Star interface for three years before the first version was complete. At first they attempted to make the icons look like a detailed photographic rendering of the object, recalled Irby, who worked on testing and refining the Xerox windows. Trading off label space, legibility, and the number of icons that fit on the screen, they decided to constrain icons to a 1-inch (2.5-centimeter) square of 64 by 64 pixels, or 512 eight-bit bytes.

Then, Verplank recalls, they discovered that because of a background pattern based on two-pixel dots, the right-hand side of the icons appeared jagged. So they increased the width of the icons to 65 pixels, despite an outcry from programmers who liked the neat 16-bit breakdown. But the increase stuck, Verplank said, because they had already decided to store 72 bits per side to allow for white space around each icon.

After settling on a size for the icons, the Star developers tested four sets developed by two graphic designers and two software engineers. They discovered that, for example, resizing may cause problems. They shrunk the icon for a person—a head and shoulders—in order to use several of them to represent a group, only to hear one test subject say the screen resolution made the reduced icon look like a cross above a tombstone. Computer graphics artist Norm Cox, now of Cox & Hall, Dallas, Texas, was finally hired to redesign the icons.

Icon designers today still wrestle with the need to make icons adaptable to the many different system configurations offered by computer makers. Artist Karen Elliott, who has designed icons for Microsoft, Apple, Hewlett-Packard Co., and others, noted that on different systems an icon may be displayed in different colors, several resolutions, and a variety of gray shades, and it may also be inverted (light and dark areas reversed).

In the past few years, another concern has been added to icon designers’ tasks: internationalization. Icons designed in the United States often lack space for translations into languages other than English. Elliott therefore tries to leave space for both the longer words and the vertical orientation of some languages.


A square white macintosh computer with a white keyboard, in a separate image below, computer icons and the text address book, address, addresses

The main rule is to make icons simple, clean, and easily recognizable. Discarded objects are placed in a trash can on the Macintosh. On the NeXT Computer System, from NeXT Inc., Palo Alto, Calif.—the company formed by Apple cofounder Steven Jobs after he left Apple—they are dumped into a Black Hole. Elliott sees NeXT’s black hole as one of the best icons ever designed: ”It is distinct; its roundness stands out from the other, square icons, and this is important on a crowded display. It fits my image of information being sucked away, and it makes it clear that dumping something is serious.

English disagrees vehemently. The black hole “is fundamentally wrong,” he said. “You can dig paper out of a wastebasket, but you can’t dig it out of a black hole.” Another critic called the black hole familiar only to “computer nerds who read mostly science fiction and comics,” not to general users.

With the introduction of the Xerox Star in June 1981, the graphical user interface, as it is known today, arrived on the market. Though not a commercial triumph, the Star generated great interest among computer users, as the Alto before it had within the universe of computer designers.

Even before the Star was introduced, Jobs, then still at Apple, had visited Xerox PARC in November 1979 and asked the Smalltalk researchers dozens of questions about the Alto’s internal design. He later recruited Larry Tesler from Xerox to design the user interface of the Apple Lisa.

With the Lisa and then the Macintosh, introduced in January 1983 and January 1984 respectively, the graphical user interface reached the low-cost, high-volume computer market.

At almost $10,000, buyers deemed the Lisa too expensive for the office market. But aided by prizewinning advertising and its lower price, the Macintosh took the world by storm. Early Macs had only 128K bytes of RAM, which made them slow to respond because it was too little memory for heavy graphic manipulation. Also, the time needed for programmers to learn its Toolbox of graphics routines delayed application packages until well into 1985. But the Mac’s ease of use was indisputable, and it generated interest that spilled over into the MS-DOS world of IBM PCs and clones, as well as Unix-based workstations.

Who owns the graphical user interface?


The widespread acceptance of such interfaces, however, has led to bitter lawsuits to establish exactly who owns what. So far, none of several litigious companies has definitively established that it owns the software that implements windows, icons, or early versions of menus. But the suits continue.

Virtually all the companies that make and sell either wheel or ball mice paid license fees to SRI or to Xerox for their patents. Engelbart recalled that SRI patent attorneys inspected all the early work on the interface, but understood only hardware. After looking at developments like the implementation of windows, they told him that none of it was patentable.

At Xerox, the Star development team proposed 12 patents having to do with the user interface. The company’s patent committee rejected all but two on hardware—one on BitBlt, the other on the Star architecture. At the time, Charles Irby said, it was a good decision. Patenting required full disclosure, and no precedents then existed for winning software patent suits.


A computer screen in blue and white with multiple open windows


Three computer windows with greyscale images on a dark grey background


Computer windows tinted blue on a black background partially obscuring a planet and starfield


The most recent and most publicized suit was filed in March 1988, by Apple, against both Microsoft and Hewlett-Packard Co., Palo Alto, Calif. Apple alleges that HP’s New Wave interface, requiring version 2.03 of Microsoft’s Windows program, embodies the copyrighted “audio visual computer display” of the Macintosh without permission; that the displays of Windows 2.03 are illegal copies of the Mac’s audiovisual works; and that Windows 2.03 also exceeds the rights granted in a November 198S agreement in which Microsoft acknowledged that the displays in Windows 1.0 were derivatives of those in Apple’s Lisa and Mac.

In March 1989, U.S. District Judge William W. Schwarzer ruled Microsoft had exceeded the bounds of its license in creating Windows 2.03. Then in July 1989 Schwarzer ruled that all but 11 of the 260 items that Apple cited in its suit were, in fact, acceptable under the 1985 agreement. The larger issue—whether Apple’s copyrights are valid, and whether Microsoft and HP infringed on them—will not now be examined until 1990.

Among those 11 are overlapping windows and movable icons. According to Pamela Samuelson, a noted software intellectual property expert and visiting professor at Emory University Law School, Atlanta, Ga., many experts would regard both as functional features of an interface that cannot be copyrighted, rather than “expressions” of an idea protectable by copyright.

But lawyers for Apple—and for other companies that have filed lawsuits to protect the “look and feel’’ of their screen displays—maintain that if such protection is not granted, companies will lose the economic incentive to market technological innovations. How is Apple to protect its investment in developing the Lisa and Macintosh, they argue, if it cannot license its innovations to companies that want to take advantage of them?

If the Apple-Microsoft case does go to trial on the copyright issues, Samuelson said, the court may have to consider whether Apple can assert copyright protection for overlapping windows-an interface feature on which patents have also been granted. In April 1989, for example, Quarterdeck Office Systems Inc., Santa Monica, Calif., received a patent for a multiple windowing system in its Desq system software, introduced in 1984.

Adding fuel to the legal fire, Xerox said in May 1989 it would ask for license fees from companies that use the graphical user interface. But it is unclear whether Xerox has an adequate claim to either copyright or patent protection for the early graphical interface work done at PARC. Xerox did obtain design patents on later icons, noted human factors engineer Verplank. Meanwhile, both Metaphor and Sun Microsystems have negotiated licenses with Xerox for their own interfaces.

To Probe Further

The September 1989 IEEE Computer contains an article, “The Xerox ‘Star’: A Retrospective,” by Jeff Johnson et al., covering development of the Star. “Designing the Star User Interface,’’ [PDF] by David C. Smith et al., appeared in the April 1982 issue of Byte.

The Sept. 12, 1989, PC Magazine contains six articles on graphical user interfaces for personal computers and workstations. The July 1989 Byte includes ‘‘A Guide to [Graphical User Interfaces),” by Frank Hayes and Nick Baran, which describes 12 current interfaces for workstations and personal computers. “The Interface of Tomorrow, Today,’’ by Howard Reingold, in the July 10, 1989, InfoWorld does the same. “The interface that launched a thousand imitations,” by Richard Rawles, in the March 21, 1989, MacWeek covers the Macintosh interface.

The human factors of user interface design are discussed in The Psychology of Everyday Things, by Donald A. Norman (Basic Books Inc., New York, 1988). The January 1989 IEEE Software contains several articles on methods, techniques, and tools for designing and implementing graphical interfaces. The Way Things Work, by David Macaulay (Houghton Mifflin Co., Boston, 1988), contains a detailed drawing of a ball mouse.

The October 1985 IEEE Spectrum covered Xerox PARC’s history in “Research at Xerox PARC: a founder’s assessment,” by George Pake (pp. 54-61) and “Inside the PARC: the ‘information architects,’“ by Tekla Perry and Paul Wallich (pp. 62-75).

William Atkinson received patent no. 4,464,652 for the pulldown menu system on Aug. 8, 1984, and assigned it to Apple. Gary Pope received patent no. 4,823,108, for an improved system for displaying images in “windows” on a computer screen, on April 18, 1989, and assigned it to Quarterdeck Office Systems.

The wheel mouse patent, no. 3,541,541, “X-Y position indicator for a display system,” was issued to Douglas Engelbart on Nov. 17, 1970, and assigned to SRI International. The ball mouse patent, no. 3,835,464, was issued to Ronald Rider on Sept. 10, 1974, and assigned to Xerox.

The first selection device tests to include a mouse are covered in “Display-Selection Techniques for Text Manipulation,” by William English, Douglas Engelbart, and Melvyn Berman, in IEEE Transactions on Human Factors in Electronics, March 1967.

Sketchpad: A Man-Machine Graphical Communication System, by Ivan E. Sutherland (Garland Publishing Inc., New York City and London, 1980), reprints his 1963 Ph.D. thesis.










Match ID: 16 Score: 4.29 source: spectrum.ieee.org age: 7 days
qualifiers: 4.29 judge

Here’s All the Science Hitching a Ride on Artemis I
Wed, 16 Nov 2022 16:28:52 +0000


NASA’s Artemis I mission launched early in the predawn hours this morning, at 1:04 a.m. eastern time, carrying with it the hopes of a space program aiming now to land American astronauts back on the moon. The Orion spacecraft now on its way to the moon also carries with it a lot of CubeSat-size science. (As of press time, some satellites have even begun to tweet.)

And while the objective of Artemis I is to show that the launch system and spacecraft can make a trip to the moon and return safely to Earth, the mission is also a unique opportunity to send a whole spacecraft-load of science into deep space. In addition to the interior of the Orion capsule itself, there are enough nooks and crannies to handle a fair number of CubeSats, and NASA has packed as many experiments as it can into the mission. From radiation phantoms to solar sails to algae to a lunar surface payload, Artemis I has a lot going on.


Most of the variety of the science on Artemis I comes in the form of CubeSats, little satellites that are each the size of a large shoebox. The CubeSats are tucked snugly into berths inside the Orion stage adapter, which is the bit that connects the interim cryogenic propulsion stage to the ESA service module and Orion. Once the propulsion stage lifts Orion out of Earth orbit and pushes it toward the moon, the stage and adapter will separate from Orion, and the CubeSats will launch themselves.

A metal cylinder five meters across rests in a clean room with scaffolding around it, with ten small boxes mounted on platforms inside Ten CubeSats rest inside the Orion stage adapter at NASA’s Kennedy Space Center.NASA KSC

While the CubeSats look identical when packed up, each one is totally unique in both hardware and software, with different destinations and mission objectives. There are 10 in total (three weren’t ready in time for launch, which is why there are a couple of empty slots in the image above).

Here is what each one is and does:

While the CubeSats head off to do their own thing, inside the Orion capsule itself will be the temporary home of a trio of mannequins. The first, a male-bodied version provided by NASA, is named Commander Moonikin Campos, after NASA electrical engineer Arturo Campos, who was the guy who wrote the procedures that allowed the Apollo 13 command module to steal power from the lunar module’s batteries, one of many actions that saved the Apollo 13 crew.

A mannequin in an orange flight suit lies on its back in a testing room Moonikin Campos prepares for placement in the Orion capsule.NASA

Moonikin Campos will spend the mission in the Orion commander’s seat, wearing an Orion crew survival system suit. Essentially itself a spacecraft, the suit is able to sustain its occupant for up to six days if necessary. Moonikin Campos’s job will be to pretend to be an astronaut, and sensors inside him will measure radiation, acceleration, and vibration to help NASA prepare to launch human astronauts in the next Artemis mission.

Two blue female mannequins, one wearing a bulky black vest, strapped into the interior of a space capsule Hel­ga and Zo­har in place on the flight deck of the Ori­on space­craft.NASA/DLR

Accompanying Moonikin Campos are two female-bodied mannequins, named Helga and Zohar, developed by the German Aerospace Center (DLR) along with the Israel Space Agency. These are more accurately called “anthropomorphic phantoms,” and their job is to provide a detailed recording of the radiation environment inside the capsule over the course of the mission. The phantoms are female because women have more radiation-sensitive tissue than men. Both Helga and Zohar have over 6,000 tiny radiation detectors placed throughout their artificial bodies, but Zohar will be wearing an AstroRad radiation protection vest to measure how effective it is.

A dozen researchers in masks stand in front of two blue bags in a NASA laboratory NASA’s Biology Experiment-1 is transferred to the Orion team.NASA/KSC

The final science experiment to fly onboard Orion is NASA’s Biology Experiment-1. The experiment is really just seeing what time in deep space does to some specific kinds of biology, so all that has to happen is for Orion to successfully haul some packages of sample tubes around the moon and back. Samples include:

  • Plant seeds to characterize how spaceflight affects nutrient stores
  • Photosynthetic algae to identify genes that contribute to its survival in deep space
  • Aspergillus fungus to investigate radioprotective effects of melanin and DNA damage response
  • Yeast used as a model organism to identify genes that enable adaptations to conditions in both low Earth orbit and deep space

There is some concern that because of the extensive delays with the Artemis launch, the CubeSats have been sitting so long that their batteries may have run down. Some of the CubeSats could be recharged, but for others, recharging was judged to be so risky that they were left alone. Even for CubeSats that don’t start right up, though, it’s possible that after deployment, their solar panels will be able to get them going. But at this point, there’s still a lot of uncertainty, and the CubeSats’ earthbound science teams are now pinning their hopes on everything going well after launch.

For the rest of the science payloads, success mostly means Orion returning to Earth safe and sound, which will also be a success for the Artemis I mission as a whole. And assuming it does so, there will be a lot more science to come.


Match ID: 17 Score: 2.14 source: spectrum.ieee.org age: 11 days
qualifiers: 2.14 judge

The EV Transition Explained: Battery Challenges
Sat, 19 Nov 2022 19:30:00 +0000


“Energy and information are two basic currencies of organic and social systems,” the economics Nobelist Herb Simon once observed. A new technology that alters the terms on which one or the other of these is available to a system can work on it the most profound changes.”

Electric vehicles at scale alter the terms of both basic currencies concurrently. Reliable, secure supplies of minerals and software are core elements for EVs, which represent a “shift from a fuel-intensive to a material-intensive energy system,” according to a report by the International Energy Agency (IEA). For example, the mineral requirements for an EV’s batteries and electric motors are six times that of an internal-combustion-engine (ICE) vehicle, which can increase the average weight of an EV by 340 kilograms (750 pounds). For something like the Ford Lightning, the weight can be more than twice that amount.

EVs also create a shift from an electromechanical-intensive to an information-intensive vehicle. EVs offer a virtual clean slate from which to accelerate the design of safe, software-defined vehicles, with computing and supporting electronics being the prime enabler of a vehicle’s features, functions, and value. Software also allows for the decoupling of the internal mechanical connections needed in an ICE vehicle, permitting an EV to be controlled remotely or autonomously. An added benefit is that the loss of the ICE power train not only reduces the components a vehicle requires but also frees up space for increased passenger comfort and storage.

The effects of Simon’s profound changes are readily apparent, forcing a 120-year-old industry to fundamentally reinvent itself. EVs require automakers to design new manufacturing processes and build plants to make both EVs and their batteries. Ramping up the battery supply chain is the automakers’ current “most challenging topic,” according to VW chief financial officer Arno Antlitz.

It can take five or more years to get a lithium mine up and going, but operations can start only after it has secured the required permits, a process that itself can take years.

These plants are also very expensive. Ford and its Korean battery supplier SK Innovation are spending US $5.6 billion to produce F-Series EVs and batteries in Stanton, Tenn., for example, while GM is spending $2 billion to produce its new Cadillac Lyriq EVs in Spring Hill, Tenn. As automakers expand their lines of EVs, tens of billions more will need to be invested in both manufacturing and battery plants. It is little wonder that Tesla CEO Elon Musk calls EV factories “gigantic money furnaces.”

Furthermore, Kristin Dziczek a policy analyst with the Federal Reserve Bank of Chicago adds, there are scores of new global EV competitors actively seeking to replace the legacy automakers. The “simplicity” of EVs in comparison with ICE vehicles allows these disruptors to compete virtually from scratch with legacy automakers, not only in the car market itself but for the material and labor inputs as well.

Batteries and the supply-chain challenge

Another critical question is whether all the planned battery-plant output will support expected EV production demands. For instance, the United States will require 8 million EV batteries annually by 2030 if its target to make EVs half of all new-vehicle sales is met, with that number rising each year after. As IEA executive director Fatih Birol observes, “Today, the data shows a looming mismatch between the world’s strengthened climate ambitions and the availability of critical minerals that are essential to realizing those ambitions.”

This mismatch worries automakers. GM, Ford, Tesla, and others have moved to secure batteries through 2025, but it could be tricky after that. Rivian Automotive chief executive RJ Scaringe was recently quoted in the Wall Street Journal as saying that “90 to 95 percent of the (battery) supply chain does not exist,” and that the current semiconductor chip shortage is “a small appetizer to what we are about to feel on battery cells over the next two decades.”

The competition for securing raw materials, along with the increased consumer demand, has caused EV prices to spike. Ford has raised the price of the Lightning $6,000 to $8,500, and CEO Jim Farley bluntly states that in regard to material shortages in the foreseeable future, “I don’t think we should be confident in any other outcomes than an increase in prices.”

Stiff Competition for Engineering Talent


One critical area of resource competition is over the limited supply of software and systems engineers with the mechatronics and robotics expertise needed for EVs. Major automakers have moved aggressively to bring more software and systems-engineering expertise on board, rather than have it reside at their suppliers, as they have traditionally done. Automakers feel that if they're not in control of the software, they're not in control of their product.

Volvo’s CEO Jim Rowan stated earlier this year that increasing the computing power in EVs will be harder and more altering of the automotive industry than switching from ICE vehicles to EVs. This means that EV winners and losers will in great part be separated by their “relative strength in their cyberphysical systems engineering,” states Clemson’s Paredis.

Even for the large auto suppliers, the transition to EVs will not be an easy road. For instance, automakers are demanding these suppliers absorb more cost cuts because automakers are finding EVs so expensive to build. Not only do automakers want to bring cutting-edge software expertise in-house, they want greater inside expertise in critical EV supply-chain components, especially batteries.

Automakers, including Tesla, are all scrambling for battery talent, with bidding wars reportedly breaking out to acquire top candidates. With automakers planning to spend more than $13 billion to build at least 13 new EV battery plants in North America within the next five to seven years, experienced management and production-line talent will likely be in extremely short supply. Tesla’s Texas Gigafactory needs some 10,000 workers alone, for example. With at least 60 new battery plants planned to be in operation globally by 2030, and scores needed soon afterward, major battery makers are already highlighting their expected skill shortages.


The underlying reason for the worry: Supplying sufficient raw materials to existing and planned battery plants as well as to the manufacturers of other renewable energy sources and military systems—who are competing for the same materials—has several complications to overcome. Among them is the need for more mines to provide the metals required, which have spiked in price as demand has increased. For example, while demand for lithium is growing rapidly, investment in mines has significantly lagged the investment that has been aimed toward EVs and battery plants. It can take five or more years to get a lithium mine up and going, but operations can start only after it has secured the required permits, a process that itself can take years.

Mining the raw materials, of course, assumes that there is sufficient refining capability to process them, which, outside of China, is limited. This is especially true in the United States, which, according to a Biden Administration special supply-chain investigative report, has “limited raw material production capacity and virtually no processing capacity.” Consequently, the report states, the United States “exports the limited raw materials produced today to foreign markets.” For example, output from the only nickel mine in the United States, the Eagle mine in Minnesota, is sent to Canada for smelting.

“Energy and information are two basic currencies of organic and social systems. A new technology that alters the terms on which one or the other of these is available to a system can work on it the most profound changes.” —Herb Simon

One possible solution is to move away from lithium-ion batteries and nickel metal hydride batteries to other battery chemistries such as lithium-iron phosphate, lithium-ion phosphate, lithium-sulfur, lithium-metal, and sodium-ion, among many others, not to mention solid-state batteries, as a way to alleviate some of the material supply and cost problems. Tesla is moving toward the use of lithium-iron phosphate batteries, as is Ford for some of its vehicles. These batteries are cobalt free, which alleviates several sourcing issues.

Another solution may be recycling both EV batteries as well as the waste and rejects from battery manufacturing, which can run between 5 to 10 percent of production. Effective recycling of EV batteries “has the potential to reduce primary demand compared to total demand in 2040, by approximately 25 percent for lithium, 35 percent for cobalt and nickel, and 55 percent for copper,” according to a report by the University of Sidney’s Institute for Sustainable Futures.



While investments into creating EV battery recycling facilities have started, there is a looming question of whether there will be enough battery factory scrap and other lithium-ion battery waste for them to remain operational while they wait for sufficient numbers of batteries to make them profitable. Lithium-ion battery-pack recycling is very time-consuming and expensive, making mining lithium often cheaper than recycling it, for example. Recycling low or no-cobalt lithium batteries, which is the direction many automakers are taking, may also make it unprofitable to recycle them.

An additional concern is that EV batteries, once no longer useful for propelling the EV, have years of life left in them. They can be refurbished, rebuilt, and reused in EVs, or repurposed into storage devices for homes, businesses, or the grid. Whether it will make economic sense to do either at scale versus recycling them remains to be seen.

Howard Nusbaum, the administrator of the National Salvage Vehicle Reporting Program (NSVRP), succinctly puts it, “There is no recycling, and no EV-recycling industry, if there is no economic basis for one.”

In the next article in the series, we will look at whether the grid can handle tens of millions of EVs.


Match ID: 18 Score: 1.43 source: spectrum.ieee.org age: 8 days
qualifiers: 1.43 congress

The Dangers of Democrats Boosting MAGA Republicans
Sat, 19 Nov 2022 12:00:35 +0000

The midterm strategy to fund Republican extremists in the primaries worked. Some fear it will strengthen the far right in the long term.

The post The Dangers of Democrats Boosting MAGA Republicans appeared first on The Intercept.


Match ID: 19 Score: 1.43 source: theintercept.com age: 8 days
qualifiers: 1.43 congress

NASA’s DART Mission Aims to Save the World
Fri, 23 Sep 2022 15:52:53 +0000


Armageddon ruined everything. Armageddon—the 1998 movie, not the mythical battlefield—told the story of an asteroid headed straight for Earth, and a bunch of swaggering roughnecks sent in space shuttles to blow it up with a nuclear weapon.

Armageddon is big and noisy and stupid and shameless, and it’s going to be huge at the box office,” wrote Jay Carr of the Boston Globe.

Carr was right—the film was the year’s second biggest hit (after Titanic)—and ever since, scientists have had to explain, patiently, that cluttering space with radioactive debris may not be the best way to protect ourselves. NASA is now trying a slightly less dramatic approach with a robotic mission called DART—short for Double Asteroid Redirection Test. On Monday at 7:14 p.m. EDT, if all goes well, the little spacecraft will crash into an asteroid called Dimorphos, about 11 million kilometers from Earth. Dimorphos is about 160 meters across, and orbits a 780-meter asteroid, 65803 Didymos. NASA TV plans to cover it live.

DART’s end will be violent, but not blockbuster-movie-violent. Music won’t swell and girlfriends back on Earth won’t swoon. Mission managers hope the spacecraft, with a mass of about 600 kilograms, hitting at 22,000 km/h, will nudge the asteroid slightly in its orbit, just enough to prove that it’s technologically possible in case a future asteroid has Earth in its crosshairs.

“Maybe once a century or so, there’ll be an asteroid sizeable enough that we’d like to certainly know, ahead of time, if it was going to impact,” says Lindley Johnson, who has the title of planetary defense officer at NASA.

“If you just take a hair off the orbital velocity, you’ve changed the orbit of the asteroid so that what would have been impact three or four years down the road is now a complete miss.”

So take that, Hollywood! If DART succeeds, it will show there are better fuels to protect Earth than testosterone.

The risk of a comet or asteroid that wipes out civilization is really very small, but large enough that policymakers take it seriously. NASA, ordered by the U.S. Congress in 2005 to scan the inner solar system for hazards, has found nearly 900 so-called NEOs—near-Earth objects—at least a kilometer across, more than 95 percent of all in that size range that probably exist. It has plotted their orbits far into the future, and none of them stand more than a fraction of a percent chance of hitting Earth in this millennium.

An infographic showing the orientation of Didymos,  Dimorphos, DART, and LICIACube. The DART spacecraft should crash into the asteroid Dimorphos and slow it in its orbit around the larger asteroid Didymos. The LICIACube cubesat will fly in formation to take images of the impact.Johns Hopkins APL/NASA

But there are smaller NEOs, perhaps 140 meters or more in diameter, too small to end civilization but large enough to cause mass destruction if they hit a populated area. There may be 25,000 that come within 50 million km of Earth’s orbit, and NASA estimates telescopes have only found about 40 percent of them. That’s why scientists want to expand the search for them and have good ways to deal with them if necessary. DART is the first test.

NASA takes pains to say this is a low-risk mission. Didymos and Dimorphos never cross Earth’s orbit, and computer simulations show that no matter where or how hard DART hits, it cannot possibly divert either one enough to put Earth in danger. Scientists want to see if DART can alter Dimorphos’s speed by perhaps a few centimeters per second.

The DART spacecraft, a 1-meter cube with two long solar panels, is elegantly simple, equipped with a telescope called DRACO, hydrazine maneuvering thrusters, a xenon-fueled ion engine and a navigation system called SMART Nav. It was launched by a SpaceX rocket in November. About 4 hours and 90,000 km before the hoped-for impact, SMART Nav will take over control of the spacecraft, using optical images from the telescope. Didymos, the larger object, should be a point of light by then; Dimorphos, the intended target, will probably not appear as more than one pixel until about 50 minutes before impact. DART will send one image per second back to Earth, but the spacecraft is autonomous; signals from the ground, 38 light-seconds away, would be useless for steering as the ship races in.

A golden cubesat with a bright light and lines The DART spacecraft separated from its SpaceX Falcon 9 launch vehicle, 55 minutes after liftoff from Vandenberg Space Force Base, in California, 24 November 2021. In this image from the rocket, the spacecraft had not yet unfurled its solar panels.NASA

What’s more, nobody knows the shape or consistency of little Dimorphos. Is it a solid boulder or a loose cluster of rubble? Is it smooth or craggy, round or elongated? “We’re trying to hit the center,” says Evan Smith, the deputy mission systems engineer at the Johns Hopkins Applied Physics Laboratory, which is running DART. “We don’t want to overcorrect for some mountain or crater on one side that’s throwing an odd shadow or something.”

So on final approach, DART will cover 800 km without any steering. Thruster firings could blur the last images of Dimorphos’s surface, which scientists want to study. Impact should be imaged from about 50 km away by an Italian-made minisatellite, called LICIACube, which DART released two weeks ago.

“In the minutes following impact, I know everybody is going be high fiving on the engineering side,” said Tom Statler, DART’s program scientist at NASA, “but I’m going be imagining all the cool stuff that is actually going on on the asteroid, with a crater being dug and ejecta being blasted off.”

There is, of course, a possibility that DART will miss, in which case there should be enough fuel on board to allow engineers to go after a backup target. But an advantage of the Didymos-Dimorphos pair is that it should help in calculating how much effect the impact had. Telescopes on Earth (plus the Hubble and Webb space telescopes) may struggle to measure infinitesimal changes in the orbit of Dimorphos around the sun; it should be easier to see how much its orbit around Didymos is affected. The simplest measurement may be of the changing brightness of the double asteroid, as Dimorphos moves in front of or behind its partner, perhaps more quickly or slowly than it did before impact.

“We are moving an asteroid,” said Statler. “We are changing the motion of a natural celestial body in space. Humanity’s never done that before.”


Match ID: 20 Score: 1.43 source: spectrum.ieee.org age: 65 days
qualifiers: 1.43 congress

Apple Kicks Off the Cell-Calls-From-Space Race
Thu, 08 Sep 2022 14:18:38 +0000


The race to deliver cellular calls from space passes two milestones this month and saw one major announcement last month. First, Apple will offer emergency satellite messaging on two of its latest iPhone models, the company announced on Wednesday. Second, AST SpaceMobile plans a launch on Saturday, 10 September, of an experimental satellite to test full-fledged satellite 5G service. In addition, T-Mobile USA and SpaceX intend to offer their own messaging and limited data service via the second generation of SpaceX’s Starlink satellite constellation, as the two companies announced on 25 August.

Each contender is taking a different approach to space-based cellular service. The Apple offering uses the existing satellite bandwidth Globalstar once used for messaging offerings, but without the need for a satellite-specific handset. The AST project and another company, Lynk Global, would use a dedicated network of satellites with larger-than-normal antennas to produce a 4G, 5G, and someday 6G cellular signal compatible with any existing 4G-compatible phone (as detailed in other recent IEEE Spectrum coverage of space-based 5G offerings). Assuming regulatory approval is forthcoming, the technology would work first in equatorial regions and then across more of the planet as these providers expand their satellite constellations. T-Mobile and Starlink’s offering would work in the former PCS band in the United States. SpaceX, like AST and Lynk, would need to negotiate access to spectrum on a country-by-country basis.

Apple’s competitors are unlikely to see commercial operations before 2024.

“Regulators have not decided on the power limits from space, what concerns there are about interference, especially across national borders. There’s a whole bunch of regulatory issues that simply haven’t been thought about to date.”
—Tim Farrar, telecommunications consultant

The T-Mobile–Starlink announcement is “in some ways an endorsement” of AST and Lynk’s proposition, and “in other ways a great threat,” says telecommunications consultant Tim Farrar of Tim Farrar Associates in Menlo Park, Calif. AST and Lynk have so far told investors they expect their national mobile network operator partners to charge per use or per day, but T-Mobile announced that they plan to include satellite messaging in the 1,900-megahertz range in their existing services. Apple said their Emergency SOS via Satellite service would be free the first two years for U.S. and Canadian iPhone 14 buyers, but did not say what it would cost after that. For now, the Globalstar satellites it is using cannot offer the kind of broadband bandwidth AST has promised, but Globalstar has reported to investors orders for new satellites that might offer new capabilities, including new gateways.

Even under the best conditions—a clear view of the sky—users will need 15 seconds to send a message via Apple’s service. They will also have to follow onscreen guidance to keep the device pointed at the satellites they are using. Light foliage can cause the same message to take more than a minute to send. Ashley Williams, a satellite engineer at Apple who recorded the service’s announcement, also mentioned a data-compression algorithm and a series of rescue-related suggested auto-replies intended to minimize the amount of data that users would need to send during a rescue.

Meanwhile, AST SpaceMobile says it aims to launch an experimental satellite Saturday, 10 September, to test its cellular broadband offering.

Last month’s T-Mobile-SpaceX announcement “helped the world focus attention on the huge market opportunity for SpaceMobile, the only planned space-based cellular broadband network. BlueWalker 3, which has a 693 sq ft array, is scheduled for launch within weeks!” tweeted AST SpaceMobile CEO Abel Avellan on 25 August. The size of the array matters because AST SpaceMobile has so far indicated in its applications for experimental satellite licenses that it intends to use lower radio frequencies (700–900 MHz) with less propagation loss but that require antennas much larger than conventional satellites carry.

The size of the array will also make it more reflective, which has raised concerns among astronomers. The size of Starlink’s planned constellation has already provoked complaints among astronomers because it will interfere with their ability to observe space. Sky & Telescope magazine published on 1 September a call for both professional and amateur astronomers to observe the growing constellations of satellites to document the interference. Professional astronomy societies have lobbied U.S. government agencies and Congress on the issue and met with SpaceX officials in May to discuss a recent change that brightened satellites by 0.5 visual magnitudes.

So far government agencies have issued licenses for thousands of low-Earth-orbiting satellites, which have the biggest impact on astronomers. Even with the constellations starting to form, satellite-cellular telecommunications companies are still open to big regulatory risks. “Regulators have not decided on the power limits from space, what concerns there are about interference, especially across national borders. There’s a whole bunch of regulatory issues that simply haven’t been thought about to date,” Farrar says.

For a hiker with a twisted ankle, a messaging service that takes a while to connect and twinkles in and out of service as satellites fly by may be better than nothing, but early space-based cellular will not be a seamless way to connect to video calls from out at sea.

“User cooperation is in my view the single most critical aspect of whether this service will attract mass-market usage or people willing to pay a significant amount for this service,” Farrar says.


Match ID: 21 Score: 1.43 source: spectrum.ieee.org age: 80 days
qualifiers: 1.43 congress

NASA’s Artemis I Revives the Moonshot
Sun, 28 Aug 2022 13:00:00 +0000



Update 5 Sept.: For now, NASA’s giant Artemis I remains on the ground after two launch attempts scrubbed by a hydrogen leak and a balky engine sensor. Mission managers say Artemis will fly when everything's ready—but haven't yet specified whether that might be in late September or in mid-October.

“When you look at the rocket, it looks almost retro,” said Bill Nelson, the administrator of NASA. “Looks like we’re looking back toward the Saturn V. But it’s a totally different, new, highly sophisticated—more sophisticated—rocket, and spacecraft.”

Artemis, powered by the Space Launch System rocket, is America’s first attempt to send astronauts to the moon since Apollo 17 in 1972, and technology has taken giant leaps since then. On Artemis I, the first test flight, mission managers say they are taking the SLS, with its uncrewed Orion spacecraft up top, and “stressing it beyond what it is designed for”—the better to ensure safe flights when astronauts make their first landings, currently targeted to begin with Artemis III in 2025.

But Nelson is right: The rocket is retro in many ways, borrowing heavily from the space shuttles America flew for 30 years, and from the Apollo-Saturn V.

Much of Artemis’s hardware is refurbished: Its four main engines, and parts of its two strap-on boosters, all flew before on shuttle missions. The rocket’s apricot color comes from spray-on insulation much like the foam on the shuttle’s external tank. And the large maneuvering engine in Orion’s service module is actually 40 years old—used on 19 space shuttle flights between 1984 and 1992.

“I have a name for missions that use too much new technology—failures.”
—John Casani, NASA

Perhaps more important, the project inherits basic engineering from half a century of spaceflight. Just look at Orion’s crew capsule—a truncated cone, somewhat larger than the Apollo Command Module but conceptually very similar.

Old, of course, does not mean bad. NASA says there is no need to reinvent things engineers got right the first time.

“There are certain fundamental aspects of deep-space exploration that are really independent of money,” says Jim Geffre, Orion vehicle-integration manager at the Johnson Space Center in Houston. “The laws of physics haven’t changed since the 1960s. And capsule shapes happen to be really good for coming back into the atmosphere at Mach 32.”

Roger Launius, who served as NASA’s chief historian from 1990 to 2002 and as a curator at the Smithsonian Institution from then until 2017, tells of a conversation he had with John Casani, a veteran NASA engineer who managed the Voyager, Galileo, and Cassini probes to the outer planets.

“I have a name for missions that use too much new technology,” he recalls Casani saying. “Failures.”

The Artemis I flight is slated for about six weeks. (Apollo 11 lasted eight days.) The ship roughly follows Apollo’s path to the moon’s vicinity, but then puts itself in what NASA calls a distant retrograde orbit. It swoops within 110 kilometers of the lunar surface for a gravity assist, then heads 64,000 km out—taking more than a month but using less fuel than it would in closer orbits. Finally, it comes home, reentering the Earth’s atmosphere at 11 km per second, slowing itself with a heatshield and parachutes, and splashing down in the Pacific not far from San Diego.

If all four, quadruply redundant flight computer modules fail, there is a fifth, entirely separate computer onboard, running different code to get the spacecraft home.

“That extra time in space,” says Geffre, “allows us to operate the systems, give more time in deep space, and all those things that stress it, like radiation and micrometeoroids, thermal environments.”

There are, of course, newer technologies on board. Orion is controlled by two vehicle-management computers, each composed of two flight computer modules (FCMs) to handle guidance, navigation, propulsion, communications, and other systems. The flight control system, Geffre points out, is quad-redundant; if at any point one of the four FCMs disagrees with the others, it will take itself offline and, in a 22-second process, reset itself to make sure its outputs are consistent with the others’. If all four FCMs fail, there is a fifth, entirely separate computer running different code to get the spacecraft home.

Guidance and navigation, too, have advanced since the sextant used on Apollo. Orion uses a star tracker to determine its attitude, imaging stars and comparing them to an onboard database. And an optical navigation camera shoots Earth and the moon so that guidance software can determine their distance and position and keep the spacecraft on course. NASA says it’s there as backup, able to get Orion to a safe splashdown even if all communication with Earth has been lost.

But even those systems aren’t entirely new. Geffre points out that the guidance system’s architecture is derived from the Boeing 787. Computing power in deep space is limited by cosmic radiation, which can corrupt the output of microprocessors beyond the protection of Earth’s atmosphere and magnetic field.

Beyond that is the inevitable issue of cost. Artemis is a giant project, years behind schedule, started long before NASA began to buy other launches from companies like SpaceX and Rocket Lab. NASA’s inspector general, Paul Martin, testified to Congress in March that the first four Artemis missions would cost US $4.1 billion each—“a price tag that strikes us as unsustainable.”

Launius, for one, rejects the argument that government is inherently wasteful. “Yes, NASA’s had problems in managing programs in the past. Who hasn’t?” he says. He points out that Blue Origin and SpaceX have had plenty of setbacks of their own—they’re just not obliged to be public about them. “I could go on and on. It’s not a government thing per se and it’s not a NASA thing per se.”

So why return to the moon with—please forgive the pun—such a retro rocket? Partly, say those who watch Artemis closely, because it’s become too big to fail, with so much American money and brainpower invested in it. Partly because it turns NASA’s astronauts outward again, exploring instead of maintaining a space station. Partly because new perspectives could come of it. And partly because China and Russia have ambitions in space that threaten America’s.

“Apollo was a demonstration of technological verisimilitude—to the whole world,” says Launius. “And the whole world knew then, as they know today, that the future belongs to the civilization that can master science and technology.”

Update 7 Sept.: Artemis I has been on launchpad 39B, not 39A as previously reported, at Kennedy Space Center.


Match ID: 22 Score: 1.43 source: spectrum.ieee.org age: 91 days
qualifiers: 1.43 congress

NASA Administrator Statement on Agency Authorization Bill
Thu, 28 Jul 2022 15:22 EDT
NASA Administrator Bill Nelson released this statement Thursday following approval by the U.S. Congress for the NASA Authorization Act of 2022, which is part of the Creating Helpful Incentives to Produce Semiconductors (CHIPS) Act of 2022.
Match ID: 23 Score: 1.43 source: www.nasa.gov age: 122 days
qualifiers: 1.43 congress

Filter efficiency 96.911 (24 matches/777 results)

ABOUT THE PROJECT

RSS Rabbit links users to publicly available RSS entries.
Vet every link before clicking! The creators accept no responsibility for the contents of these entries.

Relevant

Fresh

Convenient

Agile

CONTACT

We're not prepared to take user feedback yet. Check back soon!

rssRabbit quadric