logo RSS Rabbit quadric
News that matters, fast.
Good luck, have news.
Happy scrolling!

Categories



Date/Time of Last Update: Mon Nov 28 06:00:32 2022 UTC




********** MUSIC **********
return to top



Filter efficiency 100.000 (0 matches/770 results)


********** ASIA **********
return to top



The State of the Transistor in 3 Charts
Sat, 26 Nov 2022 16:00:01 +0000


The most obvious change in transistor technology in the last 75 years has been just how many we can make. Reducing the size of the device has been a titanic effort and a fantastically successful one, as these charts show. But size isn’t the only feature engineers have been improving.


In 1947, there was only one transistor. According to TechInsight’s forecast, the semiconductor industry is on track to produce almost 2 billion trillion (1021) devices this year. That’s more transistors than were cumulatively made in all the years prior to 2017. Behind that barely conceivable number is the continued reduction in the price of a transistor, as engineers have learned to integrate more and more of them into the same area of silicon.


Scaling down transistors in the 2D space of the plane of the silicon has been a smashing success: Transistor density in logic circuits has increased more than 600,000-fold since 1971. Reducing transistor size requires using shorter wavelengths of light, such as extreme ultraviolet, and other lithography tricks to shrink the space between transistor gates and between metal interconnects. Going forward, it’s the third dimension, where transistors will be built atop one another, that counts. This trend is more than a decade old in flash memory, but it’s still in the future for logic (see “Taking Moore’s Law to New Heights.”)


Perhaps the crowning achievement of all this effort is the ability to integrate millions, even billions, of transistors into some of the most complex systems on the planet: CPUs. Here’s a look at some of the high points along the way.

What Transistors Have Become


Besides making them tiny and numerous, engineers have devoted their efforts to enhancing the device’s other qualities. Here is a small sampling of what transistors have become in the last 75 years:


Icon of a series of circles.

Ephemeral:

Researchers in Illinois developed circuits that dissolve in the body using a combination of ultrathin silicon membranes, magnesium conductors, and magnesium oxide insulators. Five minutes in water was enough to turn the first generation to mush. But recently researchers used a more durable version to make temporary cardiac pacemakers that release an anti-inflammatory drug as they disappear.


An icon of lightning bolt over a circle.

Fast:

The first transistor was made for radio frequencies, but there are now devices that operate at about a billion times those frequencies. Engineers in South Korea and Japan reported the invention of an indium gallium arsenide high-electron mobility transistor, or HEMT, that reached a maximum frequency of 738 gigahertz. Seeking raw speed, engineers at Northrop Grumman made a HEMT that passed 1 terahertz.



An icon of an iron with a line underneath.

Flat:

Today’s (and yesterday’s) transistors depend on the semiconducting properties of bulk (3D) materials. Tomorrow’s devices might rely on 2D semiconductors, such as molybdenum disulfide and tungsten disulfide. These transistors might be built in the interconnect layers above a processor’s silicon, researchers say. So 2D semiconductors could help lead to 3D processors.


An icon of a circle with a series of lines on it

Flexible:

The world is not flat, and neither are the places transistors need to operate. Using indium gallium arsenide, engineers in South Korea recently made high-performance logic transistors on plastic that hardly suffered when bent around a radius of just 4 millimeters. And engineers in Illinois and England have made microcontrollers that are both affordable and bendable.



Icon of a eye with a question mark in the center.

Invisible:

When you need to hide your computing in plain sight, turn to transparent transistors. Researchers in Fuzhou, China, recently made a see-through analogue of flash memory using organic semiconductor thin-film transistors. And researchers in Japan and Malaysia produced transparent diamond devices capable of handling more than 1,000 volts.


Icon of a brain made out of square icons

Mnemonic:

NAND flash memory cells can store multiple bits in a single device. Those on the market today store either 3 or 4 bits each. Researchers at Kioxia Corp. built a modified NAND flash cell and dunked it in 77-kelvin liquid nitrogen. A single superchilled transistor could store up to 7 bits of data, or 128 different values.



Icon of a circle with a star inside.

Talented:

In 2018, engineers in Canada used an algorithm to generate all the possible unique and functional elementary circuits that can be made using just two metal-oxide field-effect transistors. The number of circuits totaled an astounding 582. Increasing the scope to three transistors netted 56,280 circuits, including several amplifiers previously unknown to engineering.


Icon of a shield

Tough:

Some transistors can take otherworldly punishment. NASA Glenn Research Center built 200-transistor silicon carbide ICs and operated them for 60 days in a chamber that simulates the environment on the surface of Venus—460 °C heat, a planetary-probe-crushing 9.3 megapascals of pressure, and the hellish planet’s corrosive atmosphere.

This article appears in the December 2022 print issue as “The State of the Transistor.”


Match ID: 0 Score: 130.00 source: spectrum.ieee.org age: 1 day
qualifiers: 40.00 japan, 40.00 china, 30.00 south korea, 20.00 malaysia

The U.S.-China Chip Ban, Explained
Mon, 21 Nov 2022 17:28:29 +0000


It has now been over a month since the U.S. Commerce Department issued new rules that clamped down on the export of certain advanced chips—which have military or AI applications—to Chinese customers.

China has yet to respond—but Beijing has multiple options in its arsenal. It’s unlikely, experts say, that the U.S. actions will be the last fighting word in an industry that is becoming more geopolitically sensitive by the day.

This is not the first time that the U.S. government has constrained the flow of chips to its perceived adversaries. Previously, the United States has blocked chip sales to individual Chinese customers. In response to the Russian invasion of Ukraine earlier this year, the United States (along with several other countries, including South Korea and Taiwan) placed Russia under a chip embargo.


But none of these prior U.S. chip bans were as broad as the new rules, issued on 7 October. “This announcement is perhaps the most expansive export control in decades,” says Sujai Shivakumar, an analyst at the Center for International and Strategic Studies, in Washington.

The rules prohibit the sale, to Chinese customers, of advanced chips with both high performance (at least 300 trillion operations per second, or 300 teraops) and fast interconnect speed (generally, at least 600 gigabytes per second). Nvidia’s A100, for comparison, is capable of over 600 teraops and matches the 600 Gb/s interconnect speed. Nvidia’s more-impressive H100 can reach nearly 4,000 trillion operations and 900 Gb/s. Both chips, intended for data centers and AI trainers, cannot be sold to Chinese customers under the new rules.

Additionally, the rules restrict the sale of fabrication equipment if it will knowingly be used to make certain classes of advanced logic or memory chips. This includes logic chips produced at nodes of 16 nanometers or less (which the likes of Intel, Samsung, and TSMC have done since the early 2010s); NAND long-term memory integrated circuits with at least 128 layers (the state of the art today); or DRAM short-term memory integrated circuits produced at 18 nanometers or less (which Samsung began making in 2016).

Chinese chipmakers have barely scratched the surface of those numbers. SMIC switched on 14-nm mass production this year, despite facing existing U.S. sanctions. YMTC started shipping 128-layer NAND chips last year.

The rules restrict not just U.S. companies, but citizens and permanent residents as well. U.S. employees at Chinese semiconductor firms have had to pack up. ASML, a Dutch maker of fabrication equipment, has told U.S. employees to stop servicing Chinese customers.

Speaking of Chinese customers, most—including offices, gamers, designers of smaller chips—probably won’t feel the controls. “Most chip trade and chip production in China is unimpacted,” says Christopher Miller, a historian who studies the semiconductor trade at Tufts University.

The controlled sorts of chips instead go into supercomputers and large data centers, and they’re desirable for training and running large machine-learning models. Most of all, the United States hopes to stop Beijing from using chips to enhance its military—and potentially preempt an invasion of Taiwan, where the vast majority of the world’s semiconductors and microprocessors are produced.

In order to seal off one potential bypass, the controls also apply to non-U.S. firms that rely on U.S.-made equipment or software. For instance, Taiwanese or South Korean chipmakers can’t sell Chinese customers advanced chips that are fabricated with U.S.-made technology.

It’s possible to apply to the U.S. government for an exemption from at least some of the restrictions. Taiwanese fab juggernaut TSMC and South Korean chipmaker SK Hynix, for instance, have already acquired temporary exemptions—for a year. “What happens after that is difficult to say,” says Patrick Schröder, a researcher at Chatham House in London. And the Commerce Department has already stated that such licenses will be the exception, not the rule (although Commerce Department undersecretary Alan Estevez suggested that around two-thirds of licenses get approved).

More export controls may be en route. Estevez indicated that the government is considering placing restrictions on technologies in other sensitive fields—specifically mentioning quantum information science and biotechnology, both of which have seen China-based researchers forge major progress in the past decade.

The Chinese government has so far retorted with harsh words and little action. “We don’t know whether their response will be an immediate reaction or whether they have a longer-term approach to dealing with this,” says Shivakumar. “It’s speculation at this point.”

Beijing could work with foreign companies whose revenue in the lucrative Chinese market is now under threat. “I’m really not aware of a particular company that thinks it’s coming out a winner in this,” says Shivakumar. This week, in the eastern city of Hefei, the Chinese government hosted a chipmakers’ conference whose attendees included U.S. firms AMD, Intel, and Qualcomm.

Nvidia has already responded by introducing a China-specific chip, the A800, which appears to be a modified A100 cut down to meet the requirements. Analysts say that Nvidia’s approach could be a model for other companies to keep up Chinese sales.

There may be other tools the Chinese government can exploit. While China may be dependent on foreign semiconductors, foreign electronics manufacturers are in turn dependent on China for rare-earth metals—and China supplies the supermajority of the world’s rare earths.

There is precedent for China curtailing its rare-earth supply for geopolitical leverage. In 2010, a Chinese fishing boat collided with two Japanese Coast Guard vessels, triggering an international incident when Japanese authorities arrested the boat’s captain. In response, the Chinese government cut off rare-earth exports to Japan for several months.

Certainly, much of the conversation has focused on the U.S. action and the Chinese reaction. But for third parties, the entire dispute delivers constant reminders of just how tense and volatile the chip supply can be. In the European Union, home to less than 10 percent of the world’s microchips market, the debate has bolstered interest in the prospective European Chips Act, a plan to heavily invest in fabrication in Europe. “For Europe in particular, it’s important not to get caught up in this U.S.-China trade issue,” Schröder says.

“The way in which the semiconductor industry has evolved over the past few decades has predicated on a relatively stable geopolitical order,” says Shivakumar. “Obviously, the ground realities have shifted.”


Match ID: 1 Score: 77.14 source: spectrum.ieee.org age: 6 days
qualifiers: 21.43 china trade, 17.14 japan, 17.14 china, 12.86 south korea, 8.57 taiwan

How many migrant workers have died in Qatar? What we know about the human cost of the 2022 World Cup
Sun, 27 Nov 2022 17:12:07 GMT

This year’s tournament has been dominated by off-field matters. We look at the issues around the labor used to build the tournament’s infrastructure

The deaths of migrant workers in Qatar in the build-up to this year’s World Cup have drawn criticism across the world. While the tournament’s organizers put the official count at 40, estimates by the Guardian put the figure in the thousands. Here we explore the key questions around an issue that has tarnished the World Cup for many fans.

Continue reading...
Match ID: 2 Score: 45.00 source: www.theguardian.com age: 0 days
qualifiers: 35.00 india, 10.00 bangladesh

The papers: China rocked by protests and Hancock out of jungle
Mon, 28 Nov 2022 05:37:36 GMT
Monday's papers lead with the protests in Chinese cities over Beijing's strict zero-Covid policies.
Match ID: 3 Score: 40.00 source: www.bbc.co.uk age: 0 days
qualifiers: 40.00 china

Futures Movers: U.S. stock futures fall as Chinese protests rattle markets, oil hits 2022 low
Mon, 28 Nov 2022 04:39:00 GMT
U.S. stock-index futures sank Sunday night, as Asian markets fell following widespread public demonstrations in China and as oil hit a 2022 low.
Match ID: 4 Score: 40.00 source: www.marketwatch.com age: 0 days
qualifiers: 40.00 china

China prepares to send new 3-person crew to space station
Sun, 27 Nov 2022 23:06:29 EST
Final preparations are being made to send a new three-person crew to China’s space station as it nears completion amid intensifying competition with the United States
Match ID: 5 Score: 40.00 source: www.washingtonpost.com age: 0 days
qualifiers: 40.00 china

Rare protests against China’s ‘zero covid’ policy erupt across country
Sun, 27 Nov 2022 22:40:05 EST
Demonstrations were sparked by accusations that pandemic restrictions had hampered rescuers trying to reach a deadly fire in Xinjiang.
Match ID: 6 Score: 40.00 source: www.washingtonpost.com age: 0 days
qualifiers: 40.00 china

Twitter grapples with Chinese spam obscuring news of protests | For hours, links to adult content overwhelmed other posts from cities where dramatic rallies escalated
2022-11-28T03:19:01+00:00
Twitter grapples with Chinese spam obscuring news of protests | For hours, links to adult content overwhelmed other posts from cities where dramatic rallies escalated submitted by /u/MortWellian
[link] [comments]

Match ID: 7 Score: 40.00 source: www.reddit.com age: 0 days
qualifiers: 40.00 china

Partner of detained Australian journalist Cheng Lei hopeful of ‘compassionate and speedy resolution’
Mon, 28 Nov 2022 01:32:35 GMT

Nick Coyle said it was positive that prime minister Anthony Albanese and foreign minister Penny Wong had raised her case with their Chinese counterparts

The Australian journalist detained in China, Cheng Lei, is trying to remain positive despite her “very difficult situation” and is grateful for messages of encouragement from supporters, her partner has said.

Cheng’s partner, Nick Coyle, said it was positive that the Australian prime minister, the foreign minister and the deputy prime minister had all raised her case in recent talks with their Chinese counterparts.

Sign up for Guardian Australia’s free morning and afternoon email newsletters for your daily news roundup

Continue reading...
Match ID: 8 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

BBC says Chinese police assaulted and detained its reporter at Shanghai protest
Mon, 28 Nov 2022 00:10:02 GMT

Journalist Ed Lawrence was beaten after being arrested at a protest against China’s strict Covid restrictions, broadcaster says

Chinese police assaulted and detained a BBC journalist covering a protest in Shanghai on Sunday, releasing him after several hours, the broadcaster has said.

“The BBC is extremely concerned about the treatment of our journalist Ed Lawrence, who was arrested and handcuffed while covering the protests in Shanghai,” a spokesperson for the British public service broadcaster said.

Continue reading...
Match ID: 9 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Clashes in Shanghai as protests over zero-Covid policy grip China
Mon, 28 Nov 2022 00:08:27 GMT

Beijing, Chengdu and Wuhan see demonstrations as anger over Xi Jinping’s strict Covid policies builds, in a test for the Communist party

Hundreds of demonstrators and police have clashed in Shanghai as protests over China’s stringent Covid restrictions flared for a third day and spread to several cities, in the biggest test for president Xi Jinping since he secured a historic third term in power.

The wave of civil disobedience is unprecedented in mainland China in the past decade, as frustration mounts over Xi’s signature zero-Covid policy nearly three years into the pandemic.

Continue reading...
Match ID: 10 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Germany grit, Morocco magic and Croatia crush Canada – Football Daily
Sun, 27 Nov 2022 23:28:50 GMT

Max Rushden is joined by Nicky Bandini, Ed Aarons and Archie Rhind-Tutt as the second round of fixtures in Group E & F are played

Rate, review, share on Apple Podcasts, Soundcloud, Audioboom, Mixcloud, Acast and Stitcher, and join the conversation on Facebook, Twitter and email.

Today: Germany and Spain play out a lively 1-1 draw, with goals from Álvaro Morata and Niclas Füllkrug ensuring Group E remains firmly in the balance after Japan faltered against Costa Rica.

Continue reading...
Match ID: 11 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 japan

Anti-lockdown protests spread in China as anger rises over zero-Covid strategy
Sun, 27 Nov 2022 23:20:52 GMT

Beijing students shout ‘freedom will prevail’, as Urumqi fire prompts levels of disobedience unprecedented in Xi era

People opposed to China’s stringent Covid restrictions have protested in cities across the country in the biggest wave of civil disobedience on the mainland since Xi Jinping assumed power a decade ago.

Protests triggered by a deadly apartment fire in the far west of the country last week took place on Sunday in cities including Shanghai, Beijing, Chengdu, Wuhan and Guangzhou, according to footage shared on social media, in defiance of a series of heavy-handed arrests of demonstrators on Saturday night.

Continue reading...
Match ID: 12 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Rishi Sunak to set out pragmatic approach to Russia and China
Sun, 27 Nov 2022 22:35:24 GMT

Prime minister to make first major foreign policy speech, favouring a long-term, pragmatic attitude to Moscow and Beijing

Rishi Sunak will pledge an “evolutionary approach” to British foreign policy, arguing that states like Russia and China plan for the long term and the UK needs to follow suit as he attempts to set out his vision for the country’s place on the global stage.

In his first major foreign policy speech since becoming prime minister, he will draw on his years running the Treasury to say that the UK’s strength abroad must be underpinned by a strong economy at home as it stands up to competitors with “robust pragmatism”.

Continue reading...
Match ID: 13 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Germany cling to World Cup hopes after Niclas Füllkrug forces Spain draw
Sun, 27 Nov 2022 21:18:50 GMT

It turned out Germany did have a No 9, after all. His name is Niclas Füllkrug, he plays for Werder Bremen, he is 29 years old, 11 days into his international career, and when it mattered most he was there for them: coming on to give his country hope of staying in the World Cup. With just seven minutes to go in just his third game, he thumped a rising shot beyond Unai Simón to level the score, and offer them a lifeline, immediately running to the touchline and into the arms of Hansi Flick, relief all round.

If some of the jeopardy had been taken from this occasion six hours earlier, Costa Rica’s surprise victory over Japan meaning that Germany took a slight, uneasy step back from the edge of the abyss, this was still a dramatic moment and one that changes everything. Füllkrug’s goal gives the Mannschaft a footing at this tournament. They will have to defeat Costa Rica and even then their fate remains in Japan’s hands – and in Spain’s – but there is hope now. It could have been so much worse. It is not yet done for Spain yet either, although Luis Enrique noted that they still lead the group of death.

Continue reading...
Match ID: 14 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 japan

The Guardian view on bearing witness: when the mourners too are gone | Editorial
Sun, 27 Nov 2022 18:07:05 GMT

The death of a leader of Argentina’s Mothers of the Plaza de Mayo raises the question of how we can continue to remember

“We conquer death, dear children,” proclaimed Hebe de Bonafini, leader of Argentina’s Mothers of the Plaza de Mayo. She devoted decades to ensuring that her sons, “disappeared” by the military junta in the late 1970s, were kept alive, if only in memory. The Mothers at first demanded the return of their children and then the punishment of those responsible for seizing and killing them. The risks they took were immense: the group’s founders were abducted and thrown into the ocean from “death flights”. But as politicians, the church and almost all of the media remained silent, these working-class housewives stood strong and confronted a brutal regime.

Now Mrs Bonafini too is gone. With her death, at 93, the group has dwindled further, though old companions marched in homage under the blistering sun last Thursday as her ashes were scattered on the plaza. Each day, inevitably, more of those who bore witness to the crimes of the past are lost. In Israel, more than 15,500 Holocaust survivors died last year. More than a third of China’s Tiananmen Mothers – who demand justice for children killed in the bloody crackdown on 1989’s pro-reform protests – have died. This month saw the death of Bao Tong, the most senior official jailed for his sympathy for the demonstrators. At 90, he remained under constant watch by authorities, and was one of the few who dared to break the taboo around the massacre, saying that China could not move forward until it “completely repudiated” the killings.

Continue reading...
Match ID: 15 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Xi unlikely to tolerate dissent as momentous protests shake China
Sun, 27 Nov 2022 17:55:55 GMT

Chinese leader will see widespread demonstrations against zero-Covid policy as threat to CCP’s authority

Just five weeks after being elected to a historic third term, President Xi Jinping suddenly faces cracks in the facade of unchallenged authority that he so successfully presented to the world at the 20th national congress of the Chinese Communist party.

For groups of protesters, apparently without central coordination, to take to the streets across China and to social media, and for some then explicitly to call for Xi and the Communist party to stand aside, is a seismic shock.

Continue reading...
Match ID: 16 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

World Cup 2022: Japan 0-1 Costa Rica - Keysher Fuller earns shock win
Sun, 27 Nov 2022 12:29:10 GMT
Japan fail to take another step towards the World Cup knockout rounds as Keysher Fuller's late goal earns Costa Rica a smash-and-grab Group E victory.
Match ID: 17 Score: 40.00 source: www.bbc.co.uk age: 0 days
qualifiers: 40.00 japan

China Covid: Shocking protests are huge challenge for China's leaders
Sun, 27 Nov 2022 10:31:14 GMT
China's rulers appear to have drastically underestimated growing discontent at Xi Jinping's zero-Covid policy.
Match ID: 18 Score: 40.00 source: www.bbc.co.uk age: 0 days
qualifiers: 40.00 china

Depressed, powerless, angry: why frustration at China’s zero-Covid is spilling over
Sun, 27 Nov 2022 10:19:59 GMT

Public protests are the most visible signs of anger and scepticism over latest series of draconian lockdowns

Victoria Li* has experienced several lockdowns since Covid emerged in China almost three years ago. Being a prisoner in her own home in Beijing made her feel depressed, powerless and angry.

“Being stuck at home with my door sealed, I felt unmotivated to do anything,” she said. “I didn’t want to work, I didn’t want to study. Sometimes, I crept into my bed and cried,” said the lawyer, who is in her 20s.

Continue reading...
Match ID: 19 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

‘Extinction is on the table’: Jaron Lanier warns of tech’s existential threat to humanity
Sun, 27 Nov 2022 09:00:04 GMT

The American computer scientist, who coined the term ‘virtual reality,’ cautions against online ‘psychological operatives’

Jaron Lanier, the eminent American computer scientist, composer and artist, is no stranger to skepticism around social media, but his current interpretations of its effects are becoming darker and his warnings more trenchant.

Lanier, a dreadlocked free-thinker credited with coining the term “virtual reality”, has long sounded dire sirens about the dangers of a world over-reliant on the internet and at the increasing mercy of tech lords, their social media platforms and those who work for them.

Continue reading...
Match ID: 20 Score: 40.00 source: www.theguardian.com age: 0 days
qualifiers: 40.00 china

Deadly Xinjiang fire stokes discontent over China’s covid restrictions
Sat, 26 Nov 2022 13:14:01 EST
Videos show firetrucks parked at a distance from the blaze in Urumqi, leading to questions about whether China's coronavirus restrictions worsened the tragedy.
Match ID: 21 Score: 40.00 source: www.washingtonpost.com age: 1 day
qualifiers: 40.00 china

Gordon Brown says China must pay into climate fund for poor countries
Sat, 26 Nov 2022 16:41:27 GMT

Former prime minister says US and Europe will pay biggest share of loss and damage fund, but China must too

China must pay into a new fund for poor countries stricken by climate-driven disaster on the basis of its high greenhouse gas emissions and large economy, the former UK prime minister Gordon Brown has said.

“America and Europe will have to provide most, but China will have to contribute more too,” he told the Guardian.

Continue reading...
Match ID: 22 Score: 40.00 source: www.theguardian.com age: 1 day
qualifiers: 40.00 china

‘It made me think of decorations on a Christmas tree’: Arianna Genghini’s best phone picture
Sat, 26 Nov 2022 10:00:24 GMT

The Italian photographer was in San Francisco’s Chinatown when she came across this grand ivory building

Arianna Genghini’s first stop on her family road trip through four US states was San Francisco. While they went on to travel through Utah, Nevada and Arizona in a rented minivan, it was the California city’s expansive Chinatown that captured the Italian photographer’s eye most powerfully.

“I was exploring with my sister Sofia, and we spotted the Dragon Gate at the entrance to the district. It’s one of the largest Chinese communities outside China, just like a little city inside a bigger one. Stepping inside, I fell in love,” she says.

Continue reading...
Match ID: 23 Score: 40.00 source: www.theguardian.com age: 1 day
qualifiers: 40.00 china

Video Friday: Turkey Sandwich
Fri, 25 Nov 2022 17:13:24 +0000


Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today's videos!

Happy Thanksgiving, for those who celebrate it. Now spend 10 minutes watching a telepresence robot assemble a turkey sandwich.

[ Sanctuary ]

Ayato Kanada, an assistant professor at Kyushu University in Japan, wrote in to share "the world's simplest omnidirectional mobile robot."

We propose a palm-sized omnidirectional mobile robot with two torus wheels. A single torus wheel is made of an elastic elongated coil spring in which the two ends of the coil connected each other and is driven by a piezoelectric actuator (stator) that can generate 2-degrees-of-freedom (axial and angular) motions. The stator converts its thrust force and torque into longitudinal and meridian motions of the torus wheel, respectively, making the torus work as an omnidirectional wheel on a plane.

[ Paper ]

Thanks, Ayato!

This work entitled "Virtually turning robotic manipulators into worn devices: opening new horizons for wearable assistive robotics" proposes a novel hybrid system using a virtually worn robotic arm in augmented-reality, and a real robotic manipulator servoed on such virtual representation. We basically aim at bringing an illusion of wearing a robotic system while its weight is fully deported. We believe that this approach could offers a solution to the critical challenge of wight and discomfort cause by robotic sensorimotor extensions (such as supernumerary robotics limbs (SRL), prostheses or handheld tools), and open new horizons for the development of wearable robotics.

[ Paper ]

Thanks, Nathanaël!

Engineers at Georgia Tech are the first to study the mechanics of springtails, which leap in the water to avoid predators. The researchers learned how the tiny hexapods control their jump, self-right in midair, and land on their feet in the blink of an eye. The team used the findings to build penny-sized jumping robots.

[ Georgia Tech ]

Thanks, Jason!

The European Space Agency (ESA) and the European Space Resources Innovation Centre (ESRIC) have asked European space industries and research institutions to develop innovative technologies for the exploration of resources on the Moon in the framework of the ESA-ESRIC Space Resources Challenge. As part of the challenge, teams of engineers have developed vehicles capable of prospecting for resources in a test-bed simulating the Moon's shaded polar regions. From 5 to 9 September 2022, the final of the ESA-ESRIC Space Resource Challenge took place at the Rockhal in Esch-sur-Alzette. On this occasion, lunar rover prototypes competed on a 1,800 m² 'lunar' terrain. The winning team will have the opportunity to have their technology implemented on the Moon.

[ ESA ]

Thanks, Arne!

If only cobots were as easy to use as this video from Kuka makes it seem.

The Kuka website doesn't say how much this thing costs, which means it's almost certainly not something that you impulse buy.

[ Kuka ]

We present the tensegrity aerial vehicle, a design of collision-resilient rotor robots with icosahedron tensegrity structures. With collision resilience and re-orientation ability, the tensegrity aerial vehicles can operate in cluttered environments without complex collision-avoidance strategies. These capabilities are validated by a test of an experimental tensegrity aerial vehicle operating with only onboard inertial sensors in a previously-unknown forest.

[ HiPeR Lab ]

The robotics research group Brubotics and polymer science and physical chemistry group FYSC of the university of Brussels have developed together self-healing materials that can be scratched, punctured or completely cut through and heal themselves back together, with the required heat, or even at room temperature.

[ Brubotics ]

Apparently, the World Cup needs more drone footage, because this is kinda neat.

[ DJI ]

Researchers at MIT's Center for Bits and Atoms have made significant progress toward creating robots that could build nearly anything, including things much larger than themselves, from vehicles to buildings to larger robots.

[ MIT ]

The researchers from North Carolina State University have recently developed a fast and efficient soft robotic swimmer that swims resembling human's butterfly-stroke style. It can achieve a high average swimming speed of 3.74 body length per second, close to five times faster than the fastest similar soft swimmers, and also a high-power efficiency with low cost of energy.

[ NC State ]

To facilitate sensing and physical interaction in remote and/or constrained environments, high-extension, lightweight robot manipulators are easier to transport and reach substantially further than traditional serial chain manipulators. We propose a novel planar 3-degree-of-freedom manipulator that achieves low weight and high extension through the use of a pair of spooling bistable tapes, commonly used in self-retracting tape measures, which are pinched together to form a reconfigurable revolute joint.

[ Charm Lab ]

SLURP!

[ River Lab ]

This video may encourage you to buy a drone. Or a snowmobile.

[ Skydio ]

Moxie is getting an update for the holidays!

[ Embodied ]

Robotics professor Henny Admoni answers the internet's burning questions about robots! How do you program a personality? Can robots pick up a single M&M? Why do we keep making humanoid robots? What is Elon Musk's goal for the Tesla Optimus robot? Will robots take over my job writing video descriptions...I mean, um, all our jobs? Henny answers all these questions and much more.

[ CMU ]

This GRASP on Robotics talk is from Julie Adams at Oregon State University, on “Towards Adaptive Human-Robot Teams: Workload Estimation.”

The ability for robots, be it a single robot, multiple robots or a robot swarm, to adapt to the humans with which they are teamed requires algorithms that allow robots to detect human performance in real time. The multi-dimensional workload algorithm incorporates physiological metrics to estimate overall workload and its components (i.e., cognitive, speech, auditory, visual and physical). The algorithm is sensitive to changes in a human’s individual workload components and overall workload across domains, human-robot teaming relationships (i.e., supervisory, peer-based), and individual differences. The algorithm has also been demonstrated to detect shifts in workload in real-time in order to adapt the robot’s interaction with the human and autonomously change task responsibilities when the human’s workload is over- or underloaded. Recently, the algorithm was used to post-hoc analyze the resulting workload for a single human deploying a heterogeneous robot swarm in an urban environment. Current efforts are focusing on predicting the human’s future workload, recognizing the human’s current tasks, and estimating workload for previously unseen tasks.

[ UPenn ]


Match ID: 24 Score: 40.00 source: spectrum.ieee.org age: 2 days
qualifiers: 40.00 japan

U.S. stocks open mixed on short trading day
Fri, 25 Nov 2022 14:37:19 GMT

U.S. stock indexes opened mixed on Friday as investors assessed Fed rate policy outlook and weighed China's key bank-reserve's rate cut as COVID-19 cases rose. The Dow Jones Industrial Average rose 57 points, or 0.2%, to 34,251. The S&P 500 lost 0.1%, while the Nasdaq Composite shed 0.6%. The latest meeting minutes from the Federal Reserve showed most policy makers expect a slower pace of interest rate increases ahead. In addition, China's central bank on Friday cut the ratio of deposits banks have to hold in reserve by 0.25 percentage point to an average 7.8%, saying the move would release roughly $70 billion of funds into an economy struggling with a COVID-19 outbreak. Markets will close at 1 p.m. ET on Friday.

Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.


Match ID: 25 Score: 40.00 source: www.marketwatch.com age: 2 days
qualifiers: 40.00 china

Canadian pop star Kris Wu sentenced to 13 years in jail for rape in China
Fri, 25 Nov 2022 11:23:10 GMT

Beijing court finds Chinese-born singer raped three women in November and December 2020

A Beijing court has sentenced the Chinese-born Canadian pop star Kris Wu to 13 years in jail after finding him guilty of crimes including rape, just over a year after his arrest in China, where he was born and built a lucrative career.

The court in Chaoyang district said investigations showed that from November to December 2020, Wu, also known as Wu Yifan, raped three women.

Continue reading...
Match ID: 26 Score: 40.00 source: www.theguardian.com age: 2 days
qualifiers: 40.00 china

'Miya' Museum: The controversy around Assam's 'Muslim' museum
Mon, 28 Nov 2022 00:23:28 GMT
Authorities in India's Assam state sealed a museum dedicated to Muslims - and many are asking why.
Match ID: 27 Score: 35.00 source: www.bbc.co.uk age: 0 days
qualifiers: 35.00 india

The Guardian view on Modi’s India: the danger of exporting Hindu chauvinism | Editorial
Sun, 27 Nov 2022 18:08:03 GMT

New Delhi’s foreign policy won’t be insulated from its domestic politics, which demonise India’s 200 million Muslims

When the US state department recently told a court that the Saudi Arabian crown prince, Mohammed bin Salman, should have immunity in a lawsuit over the murder of the journalist Jamal Khashoggi, it portrayed its argument as a legal and not moral position. By way of evidence, it pointed to a rogues’ gallery of foreign leaders previously afforded similar protection. Nestling between Zimbabwe’s Robert Mugabe, who, it was claimed, assassinated political rivals, and Congo’s Joseph Kabila, whose security detail was accused of assaulting protesters in Washington, was India’s Narendra Modi.

Dropping Mr Modi into such a list was no accident. It is a reminder that while New Delhi basks in its diplomatic success at recent G20 and Cop27 summits, it might find the international environment less accommodating if Mr Modi and his Hindu nationalist Bharatiya Janata party (BJP) continue to stir up hatred to win elections. Washington’s gesture suggests that its strategic partnership with India cannot be completely insulated from domestic political issues. Mr Modi’s failure, as chief minister of Gujarat, to prevent anti-Muslim riots in 2002 that left hundreds dead saw him denied a US visa, until he became Indian prime minister. The message from Foggy Bottom was that the ban had not been withdrawn, but suspended, because Mr Modi ran a country that Washington wanted to do business with.

Continue reading...
Match ID: 28 Score: 35.00 source: www.theguardian.com age: 0 days
qualifiers: 35.00 india

Jyoti Bhatt: The photographer who preserved rural Indian life
Sun, 27 Nov 2022 01:09:00 GMT
Jyoti Bhatt documented the nuances of rural Indian culture that are on the cusp of disappearing.
Match ID: 29 Score: 35.00 source: www.bbc.co.uk age: 1 day
qualifiers: 35.00 india

A Criminal Ratted Out His Friend to the FBI. Now He's Trying to Make Amends.
Sat, 26 Nov 2022 12:00:23 +0000

The FBI paid a convicted sex offender $90,000 to set up his friend and his friend’s mentally ill buddy in a terrorism sting.

The post A Criminal Ratted Out His Friend to the FBI. Now He’s Trying to Make Amends. appeared first on The Intercept.


Match ID: 30 Score: 35.00 source: theintercept.com age: 1 day
qualifiers: 35.00 india

Noora and Adhila: Kerala lesbian 'brides' in 'wedding' photoshoot
Sat, 26 Nov 2022 00:24:42 GMT
Gay marriage is not legal in India but congratulations poured in as the couple posed for wedding photos.
Match ID: 31 Score: 35.00 source: www.bbc.co.uk age: 2 days
qualifiers: 35.00 india

Using artificial intelligence to spot breast cancer
Sat, 26 Nov 2022 00:13:52 GMT
An Indian company has developed a cheap, non-invasive test for breast cancer that uses thermal imaging and AI.
Match ID: 32 Score: 35.00 source: www.bbc.co.uk age: 2 days
qualifiers: 35.00 india

Tickle Pill Bug Toes With These Haptic Microfingers
Thu, 24 Nov 2022 14:00:00 +0000


All things considered, we humans are kind of big, which is very limiting to how we can comfortably interact with the world. The practical effect of this is that we tend to prioritize things that we can see and touch and otherwise directly experience, even if those things are only a small part of the world in which we live. A recent study conservatively estimates that there are 2.5 million ants for every one human on Earth. And that’s just ants. There are probably something like 7 million different species of terrestrial insects, and humans have only even noticed like 10 percent of them. The result of this disconnect is that when (for example) insect populations around the world start to crater, it takes us much longer to first notice, care, and act.

To give the small scale the attention that it deserves, we need a way of interacting with it. In a paper recently published in Scientific Reports, roboticists from Ritsumeikan University in Japan demonstrate a haptic teleoperation system that connects a human hand on one end with microfingers on the other, letting the user feel what it’s like to give a pill bug a tummy rub.


Three images showing a top view of the microfinger, which is clear with with liquid metal channels running through it, and side views of the microfinger straight and bent. At top, a microfinger showing the pneumatic balloon actuator (PBA) and liquid metal strain gauge. At bottom left, when the PBA is deflated, the microfinger is straight. At bottom right, inflating the PBA causes the finger to bend downwards.

These microfingers are just 12 millimeters long, 3 mm wide, and 490 microns (μm) thick. Inside of each microfinger is a pneumatic balloon actuator, which is just a hollow channel that can be pressurized with air. Since the channel is on the top of the microfinger, when the channel is inflated, it bulges upward, causing the microfinger to bend down. When pressure is reduced, the microfinger returns to its original position. Separate channels in the microfinger are filled with liquid metal, and as the microfinger bends, the channels elongate, thinning out the metal. By measuring the resistance of the metal, you can tell how much the finger is being bent. This combination of actuation and force sensing means that a human-size haptic system can be used as a force feedback interface: As you move your fingers, the microfingers will move, and forces can be transmitted back to you, allowing you to feel what the microfingers feel.

Two images showing a concept drawing of the microfingers interacting with a pill bug, and a human hand enclosed in sensors and actuators. The microfingers (left) can be connected to a haptic feedback and control system for use by a human.

Fans of the golden age of science fiction will recognize this system as a version of Waldo F. Jones' Synchronous Reduplicating Pantograph, although the concept has even deeper roots in sci-fi:

The thought suddenly struck me: I can make micro hands for my little hands. I can make the same gloves for them as I did for my living hands, use the same system to connect them to the handles ten times smaller than my micro arms, and then ... I will have real micro arms, they will chop my movements two hundred times. With these hands I will burst into such a smallness of life that they have only seen, but where no one else has disposed of their own hands. And I got to work.

With their very real and not science fiction system, the researchers were able to successfully determine that pill bugs can exert about 10 micro-Newtons of force through their legs, which is about the same as what has been estimated using other techniques. This is just a proof of concept study, but I’m excited about the potential here, because there is still so much of the world that humans haven’t yet been able to really touch. And besides just insect-scale tickling, there’s a broader practical context here around the development of insect-scale robots. Insects have had insect-scale sensing and mobility and whatnot pretty well figured out for a long time now, and if we’re going to make robots that can do insect-like things, we’re going to do it by learning as much as we can directly from insects themselves.

“With our strain-sensing microfinger, we were able to directly measure the pushing motion and force of the legs and torso of a pill bug—something that has been impossible to achieve previously. We anticipate that our results will lead to further technological development for microfinger-insect interactions, leading to human-environment interactions at much smaller scales.”
—Satoshi Konishi, Ritsumeikan University

I should also be clear that despite the headline, I don’t know if it’s actually possible to tickle a bug. A Google search for “are insects ticklish” turns up one single result, from someone asking this question on the "StonerThoughts" subreddit. There is some suggestion that tickling, or more specifically the kind of tickling that is surprising and can lead to laughter called gargalesis, has evolved in social mammals to promote bonding. The other kind of tickling is called knismesis, which is more of an unpleasant sensation that causes irritation or distress. You know, like the feeling of a bug crawling on you. It seems plausible (to me, anyway) that bugs may experience some kind of knismesis—but I think that someone needs to get in there and do some science, especially now that we have the tools to make it happen.
Match ID: 33 Score: 34.29 source: spectrum.ieee.org age: 3 days
qualifiers: 34.29 japan

South Korea clings to North’s denuclearization, despite dwindling chances
Sat, 26 Nov 2022 01:00:16 EST
There's little optimism that negotiations over the issue will resume — and much concern that North Korea may soon carry out its first nuclear test since 2017.
Match ID: 34 Score: 30.00 source: www.washingtonpost.com age: 1 day
qualifiers: 30.00 south korea

Oxford scientists crack case of why ketchup splatters from near-empty bottle
Thu, 24 Nov 2022 18:00:11 +0000
Squeezing more slowly and doubling diameter of the nozzle can help prevent splatter
Match ID: 35 Score: 30.00 source: arstechnica.com age: 3 days
qualifiers: 30.00 india

Apple iPhone factory workers clash with police in China
Wed, 23 Nov 2022 18:34:41 +0000
Violence erupts at Foxconn plant in Zhengzhou as COVID cases rise across country.
Match ID: 36 Score: 28.57 source: arstechnica.com age: 4 days
qualifiers: 28.57 china

The world’s first Snapdragon 8 Gen 2 phone is the Vivo X90 Pro Plus
Wed, 23 Nov 2022 17:55:10 +0000
Qualcomm's new chip will power most Android phones in 2023, but China's early.
Match ID: 37 Score: 28.57 source: arstechnica.com age: 4 days
qualifiers: 28.57 china

The long, tangled journey of a European rover to Mars takes another twist
Wed, 23 Nov 2022 16:59:09 +0000
"I am very glad to say that we have found a positive way forward."
Match ID: 38 Score: 28.57 source: arstechnica.com age: 4 days
qualifiers: 28.57 china

Spread on 2- and 10-year Treasury yields shrinks to almost minus 80 basis points, remains at most inverted level in 41 years
Wed, 23 Nov 2022 14:46:45 GMT

One of the bond market's most widely followed recession gauges dipped further below zero on Wednesday, signaling deepening concerns about the U.S. economic outlook. The spread on 2- and 10-year Treasury yields shrank to as little as minus 79.5 basis points, remaining at its most inverted level in 41 years. The inversion was being driven by a continued drop in the 10-year Treasury rate, to 3.72%, as investors fret about China's ongoing COVID-19 restrictions.

Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.


Match ID: 39 Score: 28.57 source: www.marketwatch.com age: 4 days
qualifiers: 28.57 china

IEEE SIGHT Founder Amarnath Raja Dies at 65
Wed, 23 Nov 2022 19:00:01 +0000


Amarnath Raja

Founder of IEEE Special Interest Group on Humanitarian Technology

Senior member, 65; died 5 September

Raja founded the IEEE Special Interest Group on Humanitarian Technology (SIGHT) in 2011. The global network partners with underserved communities and local organizations to leverage technology for sustainable development.


He began his career in 1980 as a management trainee at the National Dairy Development Board, in Anand, India. A year later he joined Milma, a state government marketing cooperative for the dairy industry, in Thiruvananthapuram, as a manager of planning and systems. After 15 years with Milma, he joined IBM in Tokyo as a manager of technology services.

In 2000 he helped found InApp, a company in Palo Alto, Calif., that provides software development services. He served as its CEO and executive chairman until he died.

Raja was the 2011–2012 chair of the IEEE Humanitarian Activities Committee. He wanted to find a way to mobilize engineers to apply their expertise to develop sustainable solutions that help their local community. To achieve the goal, in 2011 he founded IEEE SIGHT. Today there are more than 150 SIGHT groups in 50 countries that are working on projects such as sustainable irrigation and photovoltaic systems.

For his efforts, he received the 2015 Larry K. Wilson Transnational Award from IEEE Member and Geographic Activities. The award honors effective efforts to fulfill one or more of the MGA goals and strategic objectives related to transnational activities.

For the past two years, Rajah chaired the IEEE Admission and Advancement Review Panel, which approves applications for new members and elevations to higher membership grades.

He was a member of the International Centre for Free and Open Source Software’s advisory board. The organization was established by the government of Kerala, India, to facilitate the development and distribution of free, open-source software. Raja also served on the board of directors at Bedroc, an IT staffing and support firm in Nashville.

He earned his bachelor’s degree in chemical engineering in 1979 from the Indian Institute of Technology in Delhi.

Donn S. Terry

Software engineer

Life member, 74; died 14 September

Terry was a computer engineer at Hewlett-Packard in Fort Collins, Colo., for 18 years.

He joined HP in 1978 as a software developer, and he chaired the Portable Operating System Interface (POSIX) working group. POSIX is a family of standards specified by the IEEE Computer Society for maintaining compatibility among operating systems. While there, he also developed software for the Motorola 68000 microprocessor.

Terry left HP in 1997 to join Softway Solutions, also in Fort Collins, where he developed tools for Interix, a Unix subsystem of the Windows NT operating system. After Microsoft acquired Softway in 1999, he stayed on as a senior software development engineer at its Seattle location. There he worked on static analysis, a method of computer-program debugging that is done by examining the code without executing the program. He also helped to create SAL, a Microsoft source-code annotation language, which was developed to make code design easier to understand and analyze.

Terry retired in 2014. He loved science fiction, boating, cooking, and spending time with his family, according to his daughter, Kristin.

He earned a bachelor’s degree in electrical engineering in 1970 and a Ph.D. in computer science in 1978, both from the University of Washington in Seattle.

William Sandham

Signal processing engineer

Life senior member, 70; died 25 August

Sandham applied his signal processing expertise to a wide variety of disciplines including medical imaging, biomedical data analysis, and geophysics.

He began his career in 1974 as a physicist at the University of Glasgow. While working there, he pursued a Ph.D. in geophysics. He earned his degree in 1981 at the University of Birmingham in England. He then joined the British National Oil Corp. (now Britoil) as a geophysicist.

In 1986 he left to join the University of Strathclyde, in Glasgow, as a lecturer in the signal processing department. During his time at the university, he published more than 200 journal papers and five books that addressed blood glucose measurement, electrocardiography data analysis and compression, medical ultrasound, MRI segmentation, prosthetic limb fitting, and sleep apnea detection.

Sandham left the university in 2003 and founded Scotsig, a signal processing consulting and research business, also in Glasgow.

He served on the editorial board of IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing and the EURASIP Journal on Advances in Signal Processing.

He was a Fellow of the Institution of Engineering and Technology and a member of the European Association of Geoscientists and Engineers and the Society of Exploration Geophysicists.

Sandham earned his bachelor’s degree in electrical engineering in 1974 from the University of Glasgow.

Stephen M. Brustoski

Loss-prevention engineer

Life member, 69; died 6 January

For 40 years, Brustoski worked as a loss-prevention engineer for insurance company FM Global. He retired from the company, which was headquartered in Johnston, R.I., in 2014.

He was an elder at his church, CrossPoint Alliance, in Akron, Ohio, where he oversaw administrative work and led Bible studies and prayer meetings. He was an assistant scoutmaster for 12 years, and he enjoyed hiking and traveling the world with his family, according to his wife, Sharon.

Brustoski earned a bachelor’s degree in electrical engineering in 1973 from the University of Akron.

Harry Letaw

President and CEO of Essex Corp.

Life senior member, 96; died 7 May 2020

As president and CEO of Essex Corp., in Columbia, Md., Letaw handled the development and commercialization of optoelectronic and signal processing solutions for defense, intelligence, and commercial customers. He retired in 1995.

He had served in World War II as an aviation engineer for the U.S. Army. After he was discharged, he earned a bachelor’s degree in chemistry, then a master’s degree and Ph.D., all from the University of Florida in Gainesville, in 1949, 1951, and 1952.

After he graduated, he became a postdoctoral assistant at the University of Illinois at Urbana-Champaign. He left to become a researcher at Raytheon Technologies, an aerospace and defense manufacturer, in Wayland, Mass.

Letaw was a member of the American Physical Society and the Phi Beta Kappa and Sigma Xi honor societies.


Match ID: 40 Score: 25.00 source: spectrum.ieee.org age: 4 days
qualifiers: 25.00 india

Monkeys in central Thailand city mark their day with feast
Sun, 27 Nov 2022 07:28:30 EST
A city in central Thailand has served a meal fit for monkeys
Match ID: 41 Score: 20.00 source: www.washingtonpost.com age: 0 days
qualifiers: 20.00 thailand

Autonomous Vehicles Join the List of US National Security Threats
Mon, 21 Nov 2022 20:51:57 +0000
Lawmakers are growing concerned about a flood of data-hungry cars from China taking over American streets.
Match ID: 42 Score: 17.14 source: www.wired.com age: 6 days
qualifiers: 17.14 china

ISS Daily Summary Report – 11/21/2022
Mon, 21 Nov 2022 16:00:30 +0000
Payloads: Japanese Aerospace Exploration Agency (JAXA) Media Take Part 2: Using a JAXA camcorder, the crew participated in a live interview and recorded a session to discuss several subjects. The JAXA Public Relations Activity (JAXA EPO) includes conducting cultural activities such as writing reports about and filming video of activities aboard the ISS. These tools …
Match ID: 43 Score: 17.14 source: blogs.nasa.gov age: 6 days
qualifiers: 17.14 japan

Empresa com ex-presidente da Petrobras lucra quase meio bilhão com os campos que ele mesmo ajudou a vender
Mon, 21 Nov 2022 09:13:22 +0000

Após deixar estatal, Castello Branco assumiu conselho da 3R, companhia que faturou R$ 469 milhões apenas no terceiro trimestre deste ano.

The post Empresa com ex-presidente da Petrobras lucra quase meio bilhão com os campos que ele mesmo ajudou a vender appeared first on The Intercept.


Match ID: 44 Score: 17.14 source: theintercept.com age: 6 days
qualifiers: 17.14 china

VinFast ships first round of electric vehicles to the U.S. market
Fri, 25 Nov 2022 13:30:52 GMT

VinFast said Friday it has shipped its first batch of 999 VF 8 electric vehicles to the U.S. market. The cars are expected to arrive by ship in California about 20 days after sailing from MPC Port in Haiphong, Vietnam. The first U.S. customers are expected to receive their cars by the end of December. The international export marks the start of filling VinFast's 65,000 global orders for its VF 8 and VF 9 cars. The company will ship cars to Canada and Europe for delivery in early 2023.

Market Pulse Stories are Rapid-fire, short news bursts on stocks and markets as they move. Visit MarketWatch.com for more information on this news.


Match ID: 45 Score: 15.00 source: www.marketwatch.com age: 2 days
qualifiers: 15.00 vietnam

‘We couldn’t fail them’: how Pakistan’s floods spurred fight at Cop for loss and damage fund
Sun, 20 Nov 2022 16:24:54 GMT

With the deadly devastation fresh in the world’s mind, Pakistan pushed for damage funds with other frontline countries

In early September, after unprecedented rainfall had left a third of Pakistan under water, its climate change minister set out the country’s stall for Cop27. “We are on the frontline and intend to keep loss and damage and adapting to climate catastrophes at the core of our arguments and negotiations. There will be no moving away from that,” Sherry Rehman said.

Pakistan brought that resolve to the negotiations in Sharm el-Sheikh and, as president of the G77 plus China negotiating bloc, succeeded in keeping developing countries united on loss and damage – despite efforts by some rich countries to divide them. Its chief negotiator, Nabeel Munir, a career diplomat, was backed by a team of savvy veteran negotiators who had witnessed the devastation and suffering from the floods, which caused $30bn (£25bn) of damage and economic losses. Every day, Munir repeated the same message: “Loss and damage is not charity, it’s about climate justice.”

Continue reading...
Match ID: 46 Score: 11.43 source: www.theguardian.com age: 7 days
qualifiers: 11.43 china

Top500: Frontier Still No. 1. Where’s China?
Tue, 15 Nov 2022 21:23:54 +0000


The latest list of the world’s most powerful supercomputers reveals that Frontier, at Oak Ridge National Lab, in Tennessee, has stayed on top. The newly released Top500 list could arguably be seen as a temporary object lesson in stasis, while still pointing toward future aspirants and aspiring countries who could one day challenge Frontier’s crown.

With a performance of 1.1 exaflops, or 1.1 quintillion floating-point operations per second, Frontier was the first machine to break the exascale barrier, a threshold of a billion billion calculations per second. It is still the only exascale supercomputer announced to date, according to this week’s ranking of the world’s fastest supercomputers.

Frontier, which is based on the latest HPE Cray EX235a architecture and boasts more than 8.7 million AMD cores, remains powerful enough to perform more than twice as well as the No. 2 machine, Fugaku, at the Riken Center for Computational Science, in Japan. Fugaku had led the Top500 list for two years until Frontier ousted it in June. Running more than 7.6 million Fujitsu cores, Fugaku’s performance, at 442 petaflops, joins Frontier in posting an unchanged compute speed since June’s Top500 list.

“Frontier is a first-of-a-kind supercomputer comprised of a hybrid architecture to run calculations at an unprecedented speed,” says Justin Whitt, program director for the U.S. Department of Energy’s Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory. “Our experienced team of technical staff and vendor partners worked tirelessly for Frontier to achieve the world’s first exascale performance on the Linpack benchmark as reported in May 2022.” Whitt cited three projects that have used Frontier since its unveiling to earn finalist status for the Gordon Bell prize, to be awarded at the Supercomputing 2022 conference in Dallas this week.

At third place on the Top500 list is the Lumi system in Finland, which uses an HPE Cray EX235a architecture and harnesses some 2.2 million AMD cores. LUMI has doubled in power since June—with a performance of 309 petaflops—and remains the most powerful supercomputer in Europe.

Judging by the Top500 list alone, China’s fastest entry, Sunway TaihuLight, trails far behind Frontier, clocking in at just 93 petaflops across its more than 10 million cores. (That’s just 8 percent of Frontier’s speed.) However, China’s HPC ambitions appear to be less than fully expressed on the otherwise gold-standard Top500 list.

Unentered as a Top500 contender (though still vying for the Gordon Bell prize) is China’s OceanLight system, which by all available measures at least seems to aspire to exaflop-sized performance—albeit one that remains inscrutable to international standards, typically measured by placement on the Top500 list. In March, the tech website The Next Platform used a paper published by coauthors from institutions such as the Alibaba Group and Tsinghua University to conclude that OceanLight is at least theoretically capable of attaining peak speeds of 2.3 exaflops.

However, that is only an estimate and remains merely a tantalizing glimpse, at best, into supercomputing’s competitive exascale future. That is also a future the U.S. Commerce Department is hoping to have a hand in curtailing. On 7 October, the Commerce Department’s Bureau of Industry and Security promulgated an export control restriction that seeks to ratchet down all HPC chips sold to the People’s Republic. Nvidia, for one, has already released a chip for possible use in Chinese supercomputers that meets the U.S.’s scaled-back restrictions, intended to quell China’s highest supercomputing and AI ambitions.

“Our actions will protect U.S. national security and foreign policy interests while also sending a clear message that U.S. technological leadership is about values as well as innovation,” said Assistant Secretary of Commerce for Export Administration Thea D. Rozman Kendler, in a prepared statement at the time of the export control ban.

Meanwhile, back on the Top500 list, the only newcomer in the top 10 is Leonardo, at the Italian supercomputing consortium Cineca. Leonardo is based on the Atos BullSequana XH2000 architecture and has more than 1.4 million Intel Xeon cores. With a performance of 174.6 petaflops, Leonardo is the fourth-fastest supercomputer in the world, knocking the bottom seven entries in the previous top 10 list down a peg.

Frontier was ranked first on the last Green500 list, which measures supercomputing energy efficiency. However, it now ranks second to Henri at the Flatiron Institute, in New York. Whereas Frontier achieves 62.68 gigaflops per watt, Henri reaches about 65 gigaflops per watt. However, Henri is a far more modest machine, with only 5,920 Intel Xeon cores.

The world’s most powerful supercomputers continue to get faster. The entry point for the top 100 increased to about 10 petaflops, up from 5.39 petaflops as of June. The last system on the newest Top500 list sat at position 460 five months ago.

Intel continues to provide the processors for the largest share of Top500 computers—75.8 percent of systems, down from 81.6 percent a year ago. In contrast, AMD is making gains, underlying 20.2 percent of the systems on the current list, up from 14.6 percent a year ago.


Match ID: 47 Score: 11.43 source: spectrum.ieee.org age: 12 days
qualifiers: 5.71 japan, 5.71 china

India’s First Private Space Rocket Blasts Off
Fri, 18 Nov 2022 17:51:56 +0000


A rocket built by Indian startup Skyroot has become the country’s first privately developed launch vehicle to reach space, following a successful maiden flight earlier today. The suborbital mission is a major milestone for India’s private space industry, say experts, though more needs to be done to nurture the fledgling sector.

The Vikram-S rocket, named after the founder of the Indian space program, Vikram Sarabhai, lifted off from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre, on India’s east coast, at 11:30 a.m. local time (1 a.m. eastern time). It reached a peak altitude of 89.5 kilometers (55.6 miles), crossing the 80-km line that NASA counts as the boundary of space, but falling just short of the 100 km recognized by the Fédération Aéronautique Internationale.

In the longer run, India’s space industry has ambitions of capturing a significant chunk of the global launch market.

Pawan Kumar Chandana, cofounder of the Hyderabad-based startup, says the success of the launch is a major victory for India’s nascent space industry, but the buildup to the mission was nerve-racking. “We were pretty confident on the vehicle, but, as you know, rockets are very notorious for failure,” he says. “Especially in the last 10 seconds of countdown, the heartbeat was racing up. But once the vehicle had crossed the launcher and then went into the stable trajectory, I think that was the moment of celebration.”

At just 6 meters (20 feet) long and weighing only around 550 kilograms (0.6 tonnes), the Vikram-S is not designed for commercial use. Today’s mission, called Prarambh, which means “the beginning” in Sanskrit, was designed to test key technologies that will be used to build the startup’s first orbital rocket, the Vikram I. The rocket will reportedly be capable of lofting as much as 480 kg up to an 500-km altitude and is slated for a maiden launch next October.

man standing in front of a rocket behind him Skyroot cofounder Pawan Kumar Chandana standing in front of the Vikram-S rocket at the Satish Dhawan Space Centre, on the east coast of India.Skyroot

In particular, the mission has validated Skyroot’s decision to go with a novel all-carbon fiber structure to cut down on weight, says Chandana. It also allowed the company to test 3D-printed thrusters, which were used for spin stabilization in Vikram-S but will power the upper stages of its later rockets. Perhaps the most valuable lesson, though, says Chandana, was the complexity of interfacing Skyroot's vehicle with ISRO’s launch infrastructure. “You can manufacture the rocket, but launching it is a different ball game,” he says. “That was a great learning experience for us and will really help us accelerate our orbital vehicle.”

Skyroot is one of several Indian space startups looking to capitalize on recent efforts by the Indian government to liberalize its highly regulated space sector. Due to the dual-use nature of space technology, ISRO has historically had a government-sanctioned monopoly on most space activities, says Rajeswari Pillai Rajagopalan, director of the Centre for Security, Strategy and Technology at the Observer Research Foundation think tank, in New Delhi. While major Indian engineering players like Larsen & Toubro and Godrej Aerospace have long supplied ISRO with components and even entire space systems, the relationship has been one of a supplier and vendor, she says.

But in 2020, Finance Minister Nirmala Sitharaman announced a series of reforms to allow private players to build satellites and launch vehicles, carry out launches, and provide space-based services. The government also created the Indian National Space Promotion and Authorisation Centre (InSpace), a new agency designed to act as a link between ISRO and the private sector, and affirmed that private companies would be able to take advantage of ISRO’s facilities.

The first launch of a private rocket from an ISRO spaceport is a major milestone for the Indian space industry, says Rajagopalan. “This step itself is pretty crucial, and it’s encouraging to other companies who are looking at this with a lot of enthusiasm and excitement,” she says. But more needs to be done to realize the government’s promised reforms, she adds. The Space Activities Bill that is designed to enshrine the country’s space policy in legislation has been languishing in draft form for years, and without regulatory clarity, it’s hard for the private sector to justify significant investments. “These are big, bold statements, but these need to be translated into actual policy and regulatory mechanisms,” says Rajagopalan.

Skyroot’s launch undoubtedly signals the growing maturity of India’s space industry, says Saurabh Kapil, associate director in PwC’s space practice. “It’s a critical message to the Indian space ecosystem, that we can do it, we have the necessary skill set, we have those engineering capabilities, we have those manufacturing or industrialization capabilities,” he says.

rocket launching into the sky with fire tail The Vikram-S rocket blasting off from the Satish Dhawan Space Centre, on the east coast of India.Skyroot

However, crossing this technical milestone is only part of the challenge, he says. The industry also needs to demonstrate a clear market for the kind of launch vehicles that companies like Skyroot are building. While private players are showing interest in launching small satellites for applications like agriculture and infrastructure monitoring, he says, these companies will be able to build sustainable businesses only if they are allowed to compete for more lucrative government and defense-sector contacts.

In the longer run, though, India’s space industry has ambitions of capturing a significant chunk of the global launch market, says Kapil. ISRO has already developed a reputation for both reliability and low cost—its 2014 mission to Mars cost just US $74 million, one-ninth the cost of a NASA Mars mission launched the same week. That is likely to translate to India’s private space industry, too, thanks to a considerably lower cost of skilled labor, land, and materials compared with those of other spacefaring nations, says Kapil. “The optimism is definitely there that because we are low on cost and high on reliability, whoever wants to build and launch small satellites is largely going to come to India,” he says.


Match ID: 48 Score: 10.71 source: spectrum.ieee.org age: 9 days
qualifiers: 5.71 china, 5.00 india

The EV Transition Explained: Battery Challenges
Sat, 19 Nov 2022 19:30:00 +0000


“Energy and information are two basic currencies of organic and social systems,” the economics Nobelist Herb Simon once observed. A new technology that alters the terms on which one or the other of these is available to a system can work on it the most profound changes.”

Electric vehicles at scale alter the terms of both basic currencies concurrently. Reliable, secure supplies of minerals and software are core elements for EVs, which represent a “shift from a fuel-intensive to a material-intensive energy system,” according to a report by the International Energy Agency (IEA). For example, the mineral requirements for an EV’s batteries and electric motors are six times that of an internal-combustion-engine (ICE) vehicle, which can increase the average weight of an EV by 340 kilograms (750 pounds). For something like the Ford Lightning, the weight can be more than twice that amount.

EVs also create a shift from an electromechanical-intensive to an information-intensive vehicle. EVs offer a virtual clean slate from which to accelerate the design of safe, software-defined vehicles, with computing and supporting electronics being the prime enabler of a vehicle’s features, functions, and value. Software also allows for the decoupling of the internal mechanical connections needed in an ICE vehicle, permitting an EV to be controlled remotely or autonomously. An added benefit is that the loss of the ICE power train not only reduces the components a vehicle requires but also frees up space for increased passenger comfort and storage.

The effects of Simon’s profound changes are readily apparent, forcing a 120-year-old industry to fundamentally reinvent itself. EVs require automakers to design new manufacturing processes and build plants to make both EVs and their batteries. Ramping up the battery supply chain is the automakers’ current “most challenging topic,” according to VW chief financial officer Arno Antlitz.

It can take five or more years to get a lithium mine up and going, but operations can start only after it has secured the required permits, a process that itself can take years.

These plants are also very expensive. Ford and its Korean battery supplier SK Innovation are spending US $5.6 billion to produce F-Series EVs and batteries in Stanton, Tenn., for example, while GM is spending $2 billion to produce its new Cadillac Lyriq EVs in Spring Hill, Tenn. As automakers expand their lines of EVs, tens of billions more will need to be invested in both manufacturing and battery plants. It is little wonder that Tesla CEO Elon Musk calls EV factories “gigantic money furnaces.”

Furthermore, Kristin Dziczek a policy analyst with the Federal Reserve Bank of Chicago adds, there are scores of new global EV competitors actively seeking to replace the legacy automakers. The “simplicity” of EVs in comparison with ICE vehicles allows these disruptors to compete virtually from scratch with legacy automakers, not only in the car market itself but for the material and labor inputs as well.

Batteries and the supply-chain challenge

Another critical question is whether all the planned battery-plant output will support expected EV production demands. For instance, the United States will require 8 million EV batteries annually by 2030 if its target to make EVs half of all new-vehicle sales is met, with that number rising each year after. As IEA executive director Fatih Birol observes, “Today, the data shows a looming mismatch between the world’s strengthened climate ambitions and the availability of critical minerals that are essential to realizing those ambitions.”

This mismatch worries automakers. GM, Ford, Tesla, and others have moved to secure batteries through 2025, but it could be tricky after that. Rivian Automotive chief executive RJ Scaringe was recently quoted in the Wall Street Journal as saying that “90 to 95 percent of the (battery) supply chain does not exist,” and that the current semiconductor chip shortage is “a small appetizer to what we are about to feel on battery cells over the next two decades.”

The competition for securing raw materials, along with the increased consumer demand, has caused EV prices to spike. Ford has raised the price of the Lightning $6,000 to $8,500, and CEO Jim Farley bluntly states that in regard to material shortages in the foreseeable future, “I don’t think we should be confident in any other outcomes than an increase in prices.”

Stiff Competition for Engineering Talent


One critical area of resource competition is over the limited supply of software and systems engineers with the mechatronics and robotics expertise needed for EVs. Major automakers have moved aggressively to bring more software and systems-engineering expertise on board, rather than have it reside at their suppliers, as they have traditionally done. Automakers feel that if they're not in control of the software, they're not in control of their product.

Volvo’s CEO Jim Rowan stated earlier this year that increasing the computing power in EVs will be harder and more altering of the automotive industry than switching from ICE vehicles to EVs. This means that EV winners and losers will in great part be separated by their “relative strength in their cyberphysical systems engineering,” states Clemson’s Paredis.

Even for the large auto suppliers, the transition to EVs will not be an easy road. For instance, automakers are demanding these suppliers absorb more cost cuts because automakers are finding EVs so expensive to build. Not only do automakers want to bring cutting-edge software expertise in-house, they want greater inside expertise in critical EV supply-chain components, especially batteries.

Automakers, including Tesla, are all scrambling for battery talent, with bidding wars reportedly breaking out to acquire top candidates. With automakers planning to spend more than $13 billion to build at least 13 new EV battery plants in North America within the next five to seven years, experienced management and production-line talent will likely be in extremely short supply. Tesla’s Texas Gigafactory needs some 10,000 workers alone, for example. With at least 60 new battery plants planned to be in operation globally by 2030, and scores needed soon afterward, major battery makers are already highlighting their expected skill shortages.


The underlying reason for the worry: Supplying sufficient raw materials to existing and planned battery plants as well as to the manufacturers of other renewable energy sources and military systems—who are competing for the same materials—has several complications to overcome. Among them is the need for more mines to provide the metals required, which have spiked in price as demand has increased. For example, while demand for lithium is growing rapidly, investment in mines has significantly lagged the investment that has been aimed toward EVs and battery plants. It can take five or more years to get a lithium mine up and going, but operations can start only after it has secured the required permits, a process that itself can take years.

Mining the raw materials, of course, assumes that there is sufficient refining capability to process them, which, outside of China, is limited. This is especially true in the United States, which, according to a Biden Administration special supply-chain investigative report, has “limited raw material production capacity and virtually no processing capacity.” Consequently, the report states, the United States “exports the limited raw materials produced today to foreign markets.” For example, output from the only nickel mine in the United States, the Eagle mine in Minnesota, is sent to Canada for smelting.

“Energy and information are two basic currencies of organic and social systems. A new technology that alters the terms on which one or the other of these is available to a system can work on it the most profound changes.” —Herb Simon

One possible solution is to move away from lithium-ion batteries and nickel metal hydride batteries to other battery chemistries such as lithium-iron phosphate, lithium-ion phosphate, lithium-sulfur, lithium-metal, and sodium-ion, among many others, not to mention solid-state batteries, as a way to alleviate some of the material supply and cost problems. Tesla is moving toward the use of lithium-iron phosphate batteries, as is Ford for some of its vehicles. These batteries are cobalt free, which alleviates several sourcing issues.

Another solution may be recycling both EV batteries as well as the waste and rejects from battery manufacturing, which can run between 5 to 10 percent of production. Effective recycling of EV batteries “has the potential to reduce primary demand compared to total demand in 2040, by approximately 25 percent for lithium, 35 percent for cobalt and nickel, and 55 percent for copper,” according to a report by the University of Sidney’s Institute for Sustainable Futures.



While investments into creating EV battery recycling facilities have started, there is a looming question of whether there will be enough battery factory scrap and other lithium-ion battery waste for them to remain operational while they wait for sufficient numbers of batteries to make them profitable. Lithium-ion battery-pack recycling is very time-consuming and expensive, making mining lithium often cheaper than recycling it, for example. Recycling low or no-cobalt lithium batteries, which is the direction many automakers are taking, may also make it unprofitable to recycle them.

An additional concern is that EV batteries, once no longer useful for propelling the EV, have years of life left in them. They can be refurbished, rebuilt, and reused in EVs, or repurposed into storage devices for homes, businesses, or the grid. Whether it will make economic sense to do either at scale versus recycling them remains to be seen.

Howard Nusbaum, the administrator of the National Salvage Vehicle Reporting Program (NSVRP), succinctly puts it, “There is no recycling, and no EV-recycling industry, if there is no economic basis for one.”

In the next article in the series, we will look at whether the grid can handle tens of millions of EVs.


Match ID: 49 Score: 5.71 source: spectrum.ieee.org age: 8 days
qualifiers: 5.71 china

Are You Ready for Workplace Brain Scanning?
Sat, 19 Nov 2022 16:00:01 +0000


Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

The fundamental technology that these companies rely on is not new: Electroencephalography (EEG) has been around for about a century, and it’s commonly used today in both medicine and neuroscience research. For those applications, the subject may have up to 256 electrodes attached to their scalp with conductive gel to record electrical signals from neurons in different parts of the brain. More electrodes, or “channels,” mean that doctors and scientists can get better spatial resolution in their readouts—they can better tell which neurons are associated with which electrical signals.

What is new is that EEG has recently broken out of clinics and labs and has entered the consumer marketplace. This move has been driven by a new class of “dry” electrodes that can operate without conductive gel, a substantial reduction in the number of electrodes necessary to collect useful data, and advances in artificial intelligence that make it far easier to interpret the data. Some EEG headsets are even available directly to consumers for a few hundred dollars.

While the public may not have gotten the memo, experts say the neurotechnology is mature and ready for commercial applications. “This is not sci-fi,” says James Giordano, chief of neuroethics studies at Georgetown University Medical Center. “This is quite real.”

How InnerEye’s TSA-boosting technology works

InnerEye Security Screening Demo youtu.be

In an office in Herzliya, Israel, Sergey Vaisman sits in front of a computer. He’s relaxed but focused, silent and unmoving, and not at all distracted by the seven-channel EEG headset he’s wearing. On the computer screen, images rapidly appear and disappear, one after another. At a rate of three images per second, it’s just possible to tell that they come from an airport X-ray scanner. It’s essentially impossible to see anything beyond fleeting impressions of ghostly bags and their contents.

“Our brain is an amazing machine,” Vaisman tells us as the stream of images ends. The screen now shows an album of selected X-ray images that were just flagged by Vaisman’s brain, most of which are now revealed to have hidden firearms. No one can knowingly identify and flag firearms among the jumbled contents of bags when three images are flitting by every second, but Vaisman’s brain has no problem doing so behind the scenes, with no action required on his part. The brain processes visual imagery very quickly. According to Vaisman, the decision-making process to determine whether there’s a gun in complex images like these takes just 300 milliseconds.

Brain data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier.

What takes much more time are the cognitive and motor processes that occur after the decision making—planning a response (such as saying something or pushing a button) and then executing that response. If you can skip these planning and execution phases and instead use EEG to directly access the output of the brain’s visual processing and decision-making systems, you can perform image-recognition tasks far faster. The user no longer has to actively think: For an expert, just that fleeting first impression is enough for their brain to make an accurate determination of what’s in the image.

An illustration of a person in front of screens with suitcases above it.  InnerEye’s image-classification system operates at high speed by providing a shortcut to the brain of an expert human. As an expert focuses on a continuous stream of images (from three to 10 images per second, depending on complexity), a commercial EEG system combined with InnerEye’s software can distinguish the characteristic response the expert’s brain produces when it recognizes a target. In this example, the target is a weapon in an X-ray image of a suitcase, representing an airport-security application.Chris Philpot

Vaisman is the vice president of R&D of InnerEye, an Israel-based startup that recently came out of stealth mode. InnerEye uses deep learning to classify EEG signals into responses that indicate “targets” and “nontargets.” Targets can be anything that a trained human brain can recognize. In addition to developing security screening, InnerEye has worked with doctors to detect tumors in medical images, with farmers to identify diseased plants, and with manufacturing experts to spot product defects. For simple cases, InnerEye has found that our brains can handle image recognition at rates of up to 10 images per second. And, Vaisman says, the company’s system produces results just as accurate as a human would when recognizing and tagging images manually—InnerEye is merely using EEG as a shortcut to that person’s brain to drastically speed up the process.

While using the InnerEye technology doesn’t require active decision making, it does require training and focus. Users must be experts at the task, well trained in identifying a given type of target, whether that’s firearms or tumors. They must also pay close attention to what they’re seeing—they can’t just zone out and let images flash past. InnerEye’s system measures focus very accurately, and if the user blinks or stops concentrating momentarily, the system detects it and shows the missed images again.

Can you spot the manufacturing defects?

Examine the sample images below, and then try to spot the target among the nontargets.

Ten images are displayed every second for five seconds on loop. There are three targets.

A pair of black and white images.  The left is labelled "non target" and the right is "target." there is a red circle around a black line on the right image.

A gif of a black and white static image

Can you spot the weapon?

Three images are displayed every second for five seconds on loop. There is one weapon.

A gif of x-rayed pieces of luggage. InnerEye

Having a human brain in the loop is especially important for classifying data that may be open to interpretation. For example, a well-trained image classifier may be able to determine with reasonable accuracy whether an X-ray image of a suitcase shows a gun, but if you want to determine whether that X-ray image shows something else that’s vaguely suspicious, you need human experience. People are capable of detecting something unusual even if they don’t know quite what it is.

“We can see that uncertainty in the brain waves,” says InnerEye founder and chief technology officer Amir Geva. “We know when they aren’t sure.” Humans have a unique ability to recognize and contextualize novelty, a substantial advantage that InnerEye’s system has over AI image classifiers. InnerEye then feeds that nuance back into its AI models. “When a human isn’t sure, we can teach AI systems to be not sure, which is better training than teaching the AI system just one or zero,” says Geva. “There is a need to combine human expertise with AI.” InnerEye’s system enables this combination, as every image can be classified by both computer vision and a human brain.

Using InnerEye’s system is a positive experience for its users, the company claims. “When we start working with new users, the first experience is a bit overwhelming,” Vaisman says. “But in one or two sessions, people get used to it, and they start to like it.” Geva says some users do find it challenging to maintain constant focus throughout a session, which lasts up to 20 minutes, but once they get used to working at three images per second, even two images per second feels “too slow.”

In a security-screening application, three images per second is approximately an order of magnitude faster than an expert can manually achieve. InnerEye says their system allows far fewer humans to handle far more data, with just two human experts redundantly overseeing 15 security scanners at once, supported by an AI image-recognition system that is being trained at the same time, using the output from the humans’ brains.

InnerEye is currently partnering with a handful of airports around the world on pilot projects. And it’s not the only company working to bring neurotech into the workplace.

How Emotiv’s brain-tracking technology works

Workers wearing earbuds sit in an office in front of computers. Emotiv’s MN8 earbuds collect two channels of EEG brain data. The earbuds can also be used for phone calls and music. Emotiv

When it comes to neural monitoring for productivity and well-being in the workplace, the San Francisco–based company Emotiv is leading the charge. Since its founding 11 years ago, Emotiv has released three models of lightweight brain-scanning headsets. Until now the company had mainly sold its hardware to neuroscientists, with a sideline business aimed at developers of brain-controlled apps or games. Emotiv started advertising its technology as an enterprise solution only this year, when it released its fourth model, the MN8 system, which tucks brain-scanning sensors into a pair of discreet Bluetooth earbuds.

Tan Le, Emotiv’s CEO and cofounder, sees neurotech as the next trend in wearables, a way for people to get objective “brain metrics” of mental states, enabling them to track and understand their cognitive and mental well-being. “I think it’s reasonable to imagine that five years from now this [brain tracking] will be quite ubiquitous,” she says. When a company uses the MN8 system, workers get insight into their individual levels of focus and stress, and managers get aggregated and anonymous data about their teams.

The Emotiv Experience

Illustration of head with an earpiece in.  With columns of data on either side. The Emotiv Experience Chris Philpot

Emotiv’s MN8 system uses earbuds to capture two channels of EEG data, from which the company’s proprietary algorithms derive performance metrics for attention and cognitive stress. It’s very difficult to draw conclusions from raw EEG signals [top], especially with only two channels of data. The MN8 system relies on machine-learning models that Emotiv developed using a decade’s worth of data from its earlier headsets, which have more electrodes.

To determine a worker’s level of attention and cognitive stress, the MN8 system uses a variety of analyses. One shown here [middle, bar graphs] reveals increased activity in the low-frequency ranges (theta and alpha) when a worker’s attention is high and cognitive stress is low; when the worker has low attention and high stress, there’s more activity in the higher-frequency ranges (beta and gamma). This analysis and many others feed into the models that present simplified metrics of attention and cognitive stress [bottom] to the worker.

Emotiv launched its enterprise technology into a world that is fiercely debating the future of the workplace. Workers are feuding with their employers about return-to-office plans following the pandemic, and companies are increasingly using “ bossware” to keep tabs on employees—whether staffers or gig workers, working in the office or remotely. Le says Emotiv is aware of these trends and is carefully considering which companies to work with as it debuts its new gear. “The dystopian potential of this technology is not lost on us,” she says. “So we are very cognizant of choosing partners that want to introduce this technology in a responsible way—they have to have a genuine desire to help and empower employees,” she says.

Lee Daniels, a consultant who works for the global real estate services company JLL, has spoken with a lot of C-suite executives lately. “They’re worried,” says Daniels. “There aren’t as many people coming back to the office as originally anticipated—the hybrid model is here to stay, and it’s highly complex.” Executives come to Daniels asking how to manage a hybrid workforce. “This is where the neuroscience comes in,” he says.

Emotiv has partnered with JLL, which has begun to use the MN8 earbuds to help its clients collect “true scientific data,” Daniels says, about workers’ attention, distraction, and stress, and how those factors influence both productivity and well-being. Daniels says JLL is currently helping its clients run short-term experiments using the MN8 system to track workers’ responses to new collaboration tools and various work settings; for example, employers could compare the productivity of in-office and remote workers.

“The dystopian potential of this technology is not lost on us.” —Tan Le, Emotiv CEO

Emotiv CTO Geoff Mackellar believes the new MN8 system will succeed because of its convenient and comfortable form factor: The multipurpose earbuds also let the user listen to music and answer phone calls. The downside of earbuds is that they provide only two channels of brain data. When the company first considered this project, Mackellar says, his engineering team looked at the rich data set they’d collected from Emotiv’s other headsets over the past decade. The company boasts that academics have conducted more than 4,000 studies using Emotiv tech. From that trove of data—from headsets with 5, 14, or 32 channels—Emotiv isolated the data from the two channels the earbuds could pick up. “Obviously, there’s less information in the two sensors, but we were able to extract quite a lot of things that were very relevant,” Mackellar says.

Once the Emotiv engineers had a hardware prototype, they had volunteers wear the earbuds and a 14-channel headset at the same time. By recording data from the two systems in unison, the engineers trained a machine-learning algorithm to identify the signatures of attention and cognitive stress from the relatively sparse MN8 data. The brain signals associated with attention and stress have been well studied, Mackellar says, and are relatively easy to track. Although everyday activities such as talking and moving around also register on EEG, the Emotiv software filters out those artifacts.

The app that’s paired with the MN8 earbuds doesn’t display raw EEG data. Instead, it processes that data and shows workers two simple metrics relating to their individual performance. One squiggly line shows the rise and fall of workers’ attention to their tasks—the degree of focus and the dips that come when they switch tasks or get distracted—while another line represents their cognitive stress. Although short periods of stress can be motivating, too much for too long can erode productivity and well-being. The MN8 system will therefore sometimes suggest that the worker take a break. Workers can run their own experiments to see what kind of break activity best restores their mood and focus—maybe taking a walk, or getting a cup of coffee, or chatting with a colleague.

What neuroethicists think about neurotech in the workplace

While MN8 users can easily access data from their own brains, employers don’t see individual workers’ brain data. Instead, they receive aggregated data to get a sense of a team or department’s attention and stress levels. With that data, companies can see, for example, on which days and at which times of day their workers are most productive, or how a big announcement affects the overall level of worker stress.

Emotiv emphasizes the importance of anonymizing the data to protect individual privacy and prevent people from being promoted or fired based on their brain metrics. “The data belongs to you,” says Emotiv’s Le. “You have to explicitly allow a copy of it to be shared anonymously with your employer.” If a group is too small for real anonymity, Le says, the system will not share that data with employers. She also predicts that the device will be used only if workers opt in, perhaps as part of an employee wellness program that offers discounts on medical insurance in return for using the MN8 system regularly.

However, workers may still be worried that employers will somehow use the data against them. Karen Rommelfanger, founder of the Institute of Neuroethics, shares that concern. “I think there is significant interest from employers” in using such technologies, she says. “I don’t know if there’s significant interest from employees.”

Both she and Georgetown’s Giordano doubt that such tools will become commonplace anytime soon. “I think there will be pushback” from employees on issues such as privacy and worker rights, says Giordano. Even if the technology providers and the companies that deploy the technology take a responsible approach, he expects questions to be raised about who owns the brain data and how it’s used. “Perceived threats must be addressed early and explicitly,” he says.

Giordano says he expects workers in the United States and other western countries to object to routine brain scanning. In China, he says, workers have reportedly been more receptive to experiments with such technologies. He also believes that brain-monitoring devices will really take off first in industrial settings, where a momentary lack of attention can lead to accidents that injure workers and hurt a company’s bottom line. “It will probably work very well under some rubric of occupational safety,” Giordano says. It’s easy to imagine such devices being used by companies involved in trucking, construction, warehouse operations, and the like. Indeed, at least one such product, an EEG headband that measures fatigue, is already on the market for truck drivers and miners.

Giordano says that using brain-tracking devices for safety and wellness programs could be a slippery slope in any workplace setting. Even if a company focuses initially on workers’ well-being, it may soon find other uses for the metrics of productivity and performance that devices like the MN8 provide. “Metrics are meaningless unless those metrics are standardized, and then they very quickly become comparative,” he says.

Rommelfanger adds that no one can foresee how workplace neurotech will play out. “I think most companies creating neurotechnology aren’t prepared for the society that they’re creating,” she says. “They don’t know the possibilities yet.”

This article appears in the December 2022 print issue.


Match ID: 50 Score: 5.71 source: spectrum.ieee.org age: 8 days
qualifiers: 5.71 china

China’s Moon Missions Shadow NASA Artemis’s Pace
Wed, 07 Sep 2022 16:56:57 +0000


This past weekend, NASA scrubbed the Artemis I uncrewed mission to the moon and back. Reportedly, the space agency will try again to launch the inaugural moon mission featuring the gargantuan Space Launch System (SLS) at the end of this month or sometime in October. Meanwhile, half a world away, China is progressing on its own step-by-step program to put both robotic and, eventually, crewed spacecraft on the lunar surface and keep pace with NASA-led achievements.

Asia’s rapidly growing space power has already made a number of impressive lunar leaps but will need to build on these in the coming years. Ambitious sample-return missions, landings at the lunar south pole, testing the ability to 3D print using materials from regolith, and finally sending astronauts on a short-term visit to our celestial neighbor are in the cards before the end of the decade.

The next step, expected around 2024, is Chang’e-6: an unprecedented attempt to collect rock samples from the far side of the moon.

The mission will build on two recent major space achievements. In 2019, China became the first country to safely land a spacecraft on the far side of the moon, a hemisphere which cannot be seen from Earth—as the moon is tidally locked. The mission was made possible by a relay satellite out beyond the moon at Earth-moon Lagrange point 2, where it can bounce signals between Chang’e-4 and ground stations in China.

Chang’e-5 in 2020 performed the first sampling of lunar material in over four decades. The complex, four-spacecraft mission used an orbiter, lander, ascent vehicle, and return capsule to successfully deliver 1.731 grams of lunar rocks to Earth. The automated rendezvous and docking in lunar orbit of the orbiter and ascent spacecraft was also seen as a test of the technology for getting astronauts off the moon and back to Earth.

Chang’e-6 will again attempt to collect new samples, this time from the South pole-Aitken basin, a massive and ancient impact crater on the far side of the moon. The science return of such a mission could likewise be huge as its rocks have the potential to answer some significant questions about the moon’s geological past, says planetary scientist Katherine Joy of the University of Manchester, in England.

“We think that the basin-formation event was so large that the moon’s mantle could have been excavated from tens of kilometers deep,” says Joy. Fragments of this mantle material originating from deep in the moon would help us to understand how the Moon differentiated early in its history, the nature of its interior, and how volcanism on the far side of the moon is different or similar to that on the nearside.

Chang’e-7, also scheduled for 2024, will look at a different set of questions geared toward lunar resources. It will target the lunar south pole, a region where NASA’s Artemis 3 crewed mission is also looking to land.

The mission will involve a flotilla of spacecraft, including a new relay satellite, an orbiter, lander, rover and a small “hopping” spacecraft designed to inspect permanently shadowed craters which are thought to contain water ice which could be used in the future to provide breathable oxygen, rocket fuel, or drinking water to lunar explorers.

Following this Chang’e-8 is expected to launch around 2027 to test in situ resource utilization and conduct other experiments and technology tests such as oxygen extraction and 3D printing related to building a permanent lunar base—for both robots and crew—in the 2030s, named the International Lunar Research Station (ILRS).

The upcoming Chang’e-6, 7 and 8 missions are expected to launch on China’s largest current rocket, the Long March 5. But, as with NASA and Artemis, China will need its own megarockets to make human lunar exploration and ultimately, perhaps, crewed lunar bases a reality.

In part in reaction to the achievements of SpaceX, the China Aerospace Science and Technology Corporation (CASC), the country’s main space contractor, is developing a new rocket specifically for launching astronauts beyond low Earth orbit.

The “new generation crew launch vehicle” will essentially bundle three Long March 5 core stages together (which will be no mean feat of engineering) while also improving the performance of its kerosene engines. The result will be a roughly 90-meter-tall rocket resembling a Long March version of SpaceX’s Falcon Heavy, capable of sending 27 tonnes of payload into translunar injection.

Two launches of the rocket will by 2030, according to leading Chinese space officials, be able to put a pair of astronauts on the moon for a 6-hour stay. Such a mission also requires developing a lunar lander and a new spacecraft capable of keeping astronauts safe in deep space.

For building infrastructure on the moon, China is looking to the future Long March 9, an SLS-class rocket capable of sending 50 tonnes into translunar injection. The project will require CASC to make breakthroughs in a number of areas, including manufacturing new, wider rocket bodies of up to 10 meters in diameter, mastering massive, higher-thrust rocket engines, and building a new launch complex at Wenchang, Hainan island, to handle the monster.

Once again NASA is leading humanity’s journey to the moon, but China’s steady accumulation of capabilities and long-term ambitions means it will likely not be far behind.


Match ID: 51 Score: 5.71 source: spectrum.ieee.org age: 81 days
qualifiers: 5.71 china

NASA’s Artemis I Revives the Moonshot
Sun, 28 Aug 2022 13:00:00 +0000



Update 5 Sept.: For now, NASA’s giant Artemis I remains on the ground after two launch attempts scrubbed by a hydrogen leak and a balky engine sensor. Mission managers say Artemis will fly when everything's ready—but haven't yet specified whether that might be in late September or in mid-October.

“When you look at the rocket, it looks almost retro,” said Bill Nelson, the administrator of NASA. “Looks like we’re looking back toward the Saturn V. But it’s a totally different, new, highly sophisticated—more sophisticated—rocket, and spacecraft.”

Artemis, powered by the Space Launch System rocket, is America’s first attempt to send astronauts to the moon since Apollo 17 in 1972, and technology has taken giant leaps since then. On Artemis I, the first test flight, mission managers say they are taking the SLS, with its uncrewed Orion spacecraft up top, and “stressing it beyond what it is designed for”—the better to ensure safe flights when astronauts make their first landings, currently targeted to begin with Artemis III in 2025.

But Nelson is right: The rocket is retro in many ways, borrowing heavily from the space shuttles America flew for 30 years, and from the Apollo-Saturn V.

Much of Artemis’s hardware is refurbished: Its four main engines, and parts of its two strap-on boosters, all flew before on shuttle missions. The rocket’s apricot color comes from spray-on insulation much like the foam on the shuttle’s external tank. And the large maneuvering engine in Orion’s service module is actually 40 years old—used on 19 space shuttle flights between 1984 and 1992.

“I have a name for missions that use too much new technology—failures.”
—John Casani, NASA

Perhaps more important, the project inherits basic engineering from half a century of spaceflight. Just look at Orion’s crew capsule—a truncated cone, somewhat larger than the Apollo Command Module but conceptually very similar.

Old, of course, does not mean bad. NASA says there is no need to reinvent things engineers got right the first time.

“There are certain fundamental aspects of deep-space exploration that are really independent of money,” says Jim Geffre, Orion vehicle-integration manager at the Johnson Space Center in Houston. “The laws of physics haven’t changed since the 1960s. And capsule shapes happen to be really good for coming back into the atmosphere at Mach 32.”

Roger Launius, who served as NASA’s chief historian from 1990 to 2002 and as a curator at the Smithsonian Institution from then until 2017, tells of a conversation he had with John Casani, a veteran NASA engineer who managed the Voyager, Galileo, and Cassini probes to the outer planets.

“I have a name for missions that use too much new technology,” he recalls Casani saying. “Failures.”

The Artemis I flight is slated for about six weeks. (Apollo 11 lasted eight days.) The ship roughly follows Apollo’s path to the moon’s vicinity, but then puts itself in what NASA calls a distant retrograde orbit. It swoops within 110 kilometers of the lunar surface for a gravity assist, then heads 64,000 km out—taking more than a month but using less fuel than it would in closer orbits. Finally, it comes home, reentering the Earth’s atmosphere at 11 km per second, slowing itself with a heatshield and parachutes, and splashing down in the Pacific not far from San Diego.

If all four, quadruply redundant flight computer modules fail, there is a fifth, entirely separate computer onboard, running different code to get the spacecraft home.

“That extra time in space,” says Geffre, “allows us to operate the systems, give more time in deep space, and all those things that stress it, like radiation and micrometeoroids, thermal environments.”

There are, of course, newer technologies on board. Orion is controlled by two vehicle-management computers, each composed of two flight computer modules (FCMs) to handle guidance, navigation, propulsion, communications, and other systems. The flight control system, Geffre points out, is quad-redundant; if at any point one of the four FCMs disagrees with the others, it will take itself offline and, in a 22-second process, reset itself to make sure its outputs are consistent with the others’. If all four FCMs fail, there is a fifth, entirely separate computer running different code to get the spacecraft home.

Guidance and navigation, too, have advanced since the sextant used on Apollo. Orion uses a star tracker to determine its attitude, imaging stars and comparing them to an onboard database. And an optical navigation camera shoots Earth and the moon so that guidance software can determine their distance and position and keep the spacecraft on course. NASA says it’s there as backup, able to get Orion to a safe splashdown even if all communication with Earth has been lost.

But even those systems aren’t entirely new. Geffre points out that the guidance system’s architecture is derived from the Boeing 787. Computing power in deep space is limited by cosmic radiation, which can corrupt the output of microprocessors beyond the protection of Earth’s atmosphere and magnetic field.

Beyond that is the inevitable issue of cost. Artemis is a giant project, years behind schedule, started long before NASA began to buy other launches from companies like SpaceX and Rocket Lab. NASA’s inspector general, Paul Martin, testified to Congress in March that the first four Artemis missions would cost US $4.1 billion each—“a price tag that strikes us as unsustainable.”

Launius, for one, rejects the argument that government is inherently wasteful. “Yes, NASA’s had problems in managing programs in the past. Who hasn’t?” he says. He points out that Blue Origin and SpaceX have had plenty of setbacks of their own—they’re just not obliged to be public about them. “I could go on and on. It’s not a government thing per se and it’s not a NASA thing per se.”

So why return to the moon with—please forgive the pun—such a retro rocket? Partly, say those who watch Artemis closely, because it’s become too big to fail, with so much American money and brainpower invested in it. Partly because it turns NASA’s astronauts outward again, exploring instead of maintaining a space station. Partly because new perspectives could come of it. And partly because China and Russia have ambitions in space that threaten America’s.

“Apollo was a demonstration of technological verisimilitude—to the whole world,” says Launius. “And the whole world knew then, as they know today, that the future belongs to the civilization that can master science and technology.”

Update 7 Sept.: Artemis I has been on launchpad 39B, not 39A as previously reported, at Kennedy Space Center.


Match ID: 52 Score: 5.71 source: spectrum.ieee.org age: 91 days
qualifiers: 5.71 china

As China’s Quantum-Encrypting Satellites Shrink, Their Networking Abilities Grow
Thu, 25 Aug 2022 18:37:07 +0000


The orbiting Tiangong-2 space lab has transmitted quantum-encryption keys to four ground stations, researchers reported on 18 August. The same network of ground stations is also able to receive quantum keys from the orbiting Micius satellite, which is in a much higher orbit, using the space station as a repeater. It comes just after the late July launch of Jinan 1, China’s second quantum-encrypting satellite, by the University of Science and Technology of China. USTC told the Xinhua News Agency that the new satellite is one-sixth the mass of its 2016 predecessor.

“The launch is significant,” says physicist Paul Kwiat of the University of Illinois in Urbana-Champaign, because it means the team are starting to build, not just plan, a quantum network. USTC researchers did not reply to IEEE Spectrum’s request for comments.

In quantum-key distribution (QKD), the quantum states of a single photon, such as polarization, encode and distribute random information that can be used to encrypt a classical message. Because it is impossible to copy the quantum state without changing it, senders and recipients can verify that their transmission got through without tampering or reading by third parties. In some scenarios it involves sending just one well-described photon at a time, but single photons are difficult to produce, and in this case, researchers used an attenuated laser to send small pulses that might also come out a couple of photons at a time, or not at all.

The USTC research team, led by Jian-Wei Pan, had already established quantum-key distribution from Micius to a single ground station in 2017, not long after the 2016 launch of the satellite. The work that Pan and colleagues reported this month, but which took place in 2018 and 2019, is a necessary step for building a constellation of quantum-encryption-compatible satellites across a range of orbits, to ensure more secure long-distance communications.

Several other research groups have transmitted quantum keys, and others are now building microsatellites for the same purpose. However, the U.S. National Security Agency’s site about QKD lists several technical limitations, such as requiring an initial verification of the counterparty’s identity, the need for special equipment, the cost, and the risk of hardware-based security vulnerabilities. In the absence of fixes, the NSA does not anticipate approving QKD for national security communications.

However, attenuated laser pulses are just one way of implementing QKD. Another is to use quantum entanglement, by which a pair of photons will behave the same way, even at a distance, when someone measures one of their quantum properties. In earlier experiments, Pan and colleagues also reported using quantum entanglement for QKD and mixing satellite and fiber-optic links to establish a mixed-modality QKD network spanning almost 5,000 kilometers.

“A quantum network with entangled nodes is the thing that would be really interesting, enabling distributed quantum computing and sensing, but that’s a hard thing to make. Being able to do QKD is a necessary but not sufficient first step,” Kwiat says. The USTC experiments are a chance to establish many technical abilities, such as the precise control of the pulse duration and direction of the lasers involved, or the ability to accurately transfer and measure the quantum signals to the standard necessary for a more complex quantum network.

That is a step ahead of the many other QKD efforts made so far on laboratory benchtops, over ground-to-ground cables, or aboard balloons or aircraft. “You have to do things very differently if you’re not allowed to fiddle with something once it’s launched into space,” Kwiat says.

The U.S. CHIPS and Science Act of 2022, signed on 9 August, allocated more than US $153 million a year for quantum computing and networks. While that’s unlikely to drive more American work toward an end goal of QKD, Kwiat says, “maybe we do it on the way to these more interesting applications.”


Match ID: 53 Score: 5.71 source: spectrum.ieee.org age: 94 days
qualifiers: 5.71 china

U.N. Kills Any Plans to Use Mercury as a Rocket Propellant
Tue, 19 Apr 2022 18:00:01 +0000


A recent United Nations provision has banned the use of mercury in spacecraft propellant. Although no private company has actually used mercury propellant in a launched spacecraft, the possibility was alarming enough—and the dangers extreme enough—that the ban was enacted just a few years after one U.S.-based startup began toying with the idea. Had the company gone through with its intention to sell mercury propellant thrusters to some of the companies building massive satellite constellations over the coming decade, it would have resulted in Earth’s upper atmosphere being laced with mercury.

Mercury is a neurotoxin. It’s also bio-accumulative, which means it’s absorbed by the body at a faster rate than the body can remove it. The most common way to get mercury poisoning is through eating contaminated seafood. “It’s pretty nasty,” says Michael Bender, the international coordinator of the Zero Mercury Working Group (ZMWG). “Which is why this is one of the very few instances where the governments of the world came together pretty much unanimously and ratified a treaty.”

Bender is referring to the 2013 Minamata Convention on Mercury, a U.N. treaty named for a city in Japan whose residents suffered from mercury poisoning from a nearby chemical factory for decades. Because mercury pollutants easily find their way into the oceans and the atmosphere, it’s virtually impossible for one country to prevent mercury poisoning within its borders. “Mercury—it’s an intercontinental pollutant,” Bender says. “So it required a global treaty.”

Today, the only remaining permitted uses for mercury are in fluorescent lighting and dental amalgams, and even those are being phased out. Mercury is otherwise found as a by-product of other processes, such as the burning of coal. But then a company hit on the idea to use it as a spacecraft propellant.

In 2018, an employee at Apollo Fusion approached the Public Employees for Environmental Responsibility (PEER), a nonprofit that investigates environmental misconduct in the United States. The employee—who has remained anonymous—alleged that the Mountain View, Calif.–based space startup was planning to build and sell thrusters that used mercury propellant to multiple companies building low Earth orbit (LEO) satellite constellations.

Four industry insiders ultimately confirmed that Apollo Fusion was building thrusters that utilized mercury propellant. Apollo Fusion, which was acquired by rocket manufacturing startup Astra in June 2021, insisted that the composition of its propellant mixture should be considered confidential information. The company withdrew its plans for a mercury propellant in April 2021. Astra declined to respond to a request for comment for this story.

Apollo Fusion wasn’t the first to consider using mercury as a propellant. NASA originally tested it in the 1960s and 1970s with two Space Electric Propulsion Tests (SERT), one of which was sent into orbit in 1970. Although the tests demonstrated mercury’s effectiveness as a propellant, the same concerns over the element’s toxicity that have seen it banned in many other industries halted its use by the space agency as well.

“I think it just sort of fell off a lot of folks’ radars,” says Kevin Bell, the staff counsel for PEER. “And then somebody just resurrected the research on it and said, ‘Hey, other than the environmental impact, this was a pretty good idea.’ It would give you a competitive advantage in what I imagine is a pretty tight, competitive market.”

That’s presumably why Apollo Fusion was keen on using it in their thrusters. Apollo Fusion as a startup emerged more or less simultaneously with the rise of massive LEO constellations that use hundreds or thousands of satellites in orbits below 2,000 kilometers to provide continual low-latency coverage. Finding a slightly cheaper, more efficient propellant for one large geostationary satellite doesn’t move the needle much. But doing the same for thousands of satellites that need to be replaced every several years? That’s a much more noticeable discount.

Were it not for mercury’s extreme toxicity, it would actually make an extremely attractive propellant. Apollo Fusion wanted to use a type of ion thruster called a Hall-effect thruster. Ion thrusters strip electrons from the atoms that make up a liquid or gaseous propellant, and then an electric field pushes the resultant ions away from the spacecraft, generating a modest thrust in the opposite direction. The physics of rocket engines means that the performance of these engines increases with the mass of the ion that you can accelerate.

Mercury is heavier than either xenon or krypton, the most commonly used propellants, meaning more thrust per expelled ion. It’s also liquid at room temperature, making it efficient to store and use. And it’s cheap—there’s not a lot of competition with anyone looking to buy mercury.

Bender says that ZMWG, alongside PEER, caught wind of Apollo Fusion marketing its mercury-based thrusters to at least three companies deploying LEO constellations—One Web, Planet Labs, and SpaceX. Planet Labs, an Earth-imaging company, has at least 200 CubeSats in low Earth orbit. One Web and SpaceX, both wireless-communication providers, have many more. One Web plans to have nearly 650 satellites in orbit by the end of 2022. SpaceX already has nearly 1,500 active satellites aloft in its Starlink constellation, with an eye toward deploying as many as 30,000 satellites before its constellation is complete. Other constellations, like Amazon’s Kuiper constellation, are also planning to deploy thousands of satellites.

In 2019, a group of researchers in Italy and the United States estimated how much of the mercury used in spacecraft propellant might find its way back into Earth’s atmosphere. They figured that a hypothetical LEO constellation of 2,000 satellites, each carrying 100 kilograms of propellant, would emit 20 tonnes of mercury every year over the course of a 10-year life span. Three quarters of that mercury, the researchers suggested, would eventually wind up in the oceans.

That amounts to 1 percent of global mercury emissions from a constellation only a fraction of the size of the one planned by SpaceX alone. And if multiple constellations adopted the technology, they would represent a significant percentage of global mercury emissions—especially, the researchers warned, as other uses of mercury are phased out as planned in the years ahead.

Fortunately, it’s unlikely that any mercury propellant thrusters will even get off the ground. Prior to the fourth meeting of the Minamata Convention, Canada, the European Union, and Norway highlighted the dangers of mercury propellant, alongside ZMWG. The provision to ban mercury usage in satellites was passed on 26 March 2022.

The question now is enforcement. “Obviously, there aren’t any U.N. peacekeepers going into space to shoot down” mercury-based satellites, says Bell. But the 137 countries, including the United States, who are party to the convention have pledged to adhere to its provisions—including the propellant ban.

The United States is notable in that list because as Bender explains, it did not ratify the Minamata Convention via the U.S. Senate but instead deposited with the U.N. an instrument of acceptance. In a 7 November 2013 statement (about one month after the original Minamata Convention was adopted), the U.S. State Department said the country would be able to fulfill its obligations “under existing legislative and regulatory authority.”

Bender says the difference is “weedy” but that this appears to mean that the U.S. government has agreed to adhere to the Minamata Convention’s provisions because it already has similar laws on the books. Except there is still no existing U.S. law or regulation banning mercury propellant. For Bender, that creates some uncertainty around compliance when the provision goes into force in 2025.

Still, with a U.S. company being the first startup to toy with mercury propellant, it might be ideal to have a stronger U.S. ratification of the Minamata Convention before another company hits on the same idea. “There will always be market incentives to cut corners and do something more dangerously,” Bell says.

Update 19 April 2022: In an email, a spokesperson for Astra stated that the company's propulsion system, the Astra Spacecraft Engine, does not use mercury. The spokesperson also stated that Astra has no plans to use mercury propellant and that the company does not have anything in orbit that uses mercury.

Updated 20 April 2022 to clarify that Apollo Fusion was building thrusters that used mercury, not that they had actually used them.


Match ID: 54 Score: 5.71 source: spectrum.ieee.org age: 222 days
qualifiers: 5.71 japan

Meet the Lunar Gateway’s Robot Caretakers
Thu, 07 Apr 2022 18:40:09 +0000


An integral part of NASA’s plan to return astronauts to the moon this decade is the Lunar Gateway, a space station that will be humanity’s first permanent outpost outside of low Earth orbit. Gateway, a partnership between NASA, the Canadian Space Agency (CSA), the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA), is intended to support operations on the lunar surface while also serving as a staging point for exploration to Mars.

Gateway will be significantly smaller than the International Space Station (ISS), initially consisting of just two modules with additional modules to be added over time. The first pieces of the station to reach lunar orbit will be the Power and Propulsion Element (PPE) attached to the Habitation and Logistics Outpost (HALO), scheduled to launch together on a SpaceX Falcon Heavy rocket in November 2024. The relatively small size of Gateway is possible because the station won’t be crewed most of the time—astronauts may pass through for a few weeks, but the expectation is that Gateway will spend about 11 months out of the year without anyone on board.


This presents some unique challenges for Gateway. On the ISS, astronauts spend a substantial amount of time on station upkeep, but Gateway will have to keep itself functional for extended periods without any direct human assistance.

“The things that the crew does on the International Space Station will need to be handled by Gateway on its own,” explains Julia Badger, Gateway autonomy system manager at NASA’s Johnson Space Center. “There’s also a big difference in the operational paradigm. Right now, ISS has a mission control that’s full time. With Gateway, we’re eventually expecting to have just 8 hours a week of ground operations.” The hundreds of commands that the ISS receives every day to keep it running will still be necessary on Gateway—they’ll just have to come from Gateway itself, rather than from humans back on Earth.

“It’s a new way of thinking compared to ISS. If something breaks on Gateway, we either have to be able to live with it for a certain amount of time, or we’ve got to have the ability to remotely or autonomously fix it.” —Julia Badger, NASA JSC

To make this happen, NASA is developing a vehicle system manager, or VSM, that will act like the omnipresent computer system found on virtually every science-fiction starship. The VSM will autonomously manage all of Gateway’s functionality, taking care of any problems that come up, to the extent that they can be managed with clever software and occasional input from a distant human. “It’s a new way of thinking compared to ISS,” explains Badger. “If something breaks on Gateway, we either have to be able to live with it for a certain amount of time, or we’ve got to have the ability to remotely or autonomously fix it.”

While Gateway itself can be thought of as a robot of sorts, there’s a limited amount that can be reasonably and efficiently done through dedicated automated systems, and NASA had to find a compromise between redundancy and both complexity and mass. For example, there was some discussion about whether Gateway’s hatches should open and close on their own, and NASA ultimately decided to leave the hatches manually operated. But that doesn’t necessarily mean that Gateway won’t be able to open its hatches without human assistance; it just means that there will be a need for robotic hands rather than human ones.

“I hope eventually we have robots up there that can open the hatches,” Badger tells us. She explains that Gateway is being designed with potential intravehicular robots (IVRs) in mind, including things like adding visual markers to important locations, placing convenient charging ports around the station interior, and designing the hatches such that the force required to open them is compatible with the capabilities of robotic limbs. Parts of Gateway’s systems may be modular as well, able to be removed and replaced by robots if necessary. “What we’re trying to do,” Badger says, “is make smart choices about Gateway’s design that don’t add a lot of mass but that will make it easier for a robot to work within the station.”

A human-sized white humanoid robot with a golden helmet and visor, in front of a task board on the International Space Station Robonaut at its test station in front of a manipulation task board on the ISS.JSC/NASA

NASA already has a substantial amount of experience with IVR. Robonaut 2, a full-size humanoid robot, spent several years on the International Space Station starting in 2011, learning how to perform tasks that would otherwise have to be done by human astronauts. More recently, a trio of cubical, toaster-size, free-flying robots called Astrobees have taken up residence on the ISS, where they’ve been experimenting with autonomous sensing and navigation. A NASA project called ISAAC (Integrated System for Autonomous and Adaptive Caretaking) is currently exploring how robots like Astrobee could be used for a variety of tasks on Gateway, from monitoring station health to autonomously transferring cargo, although at least in the near term, in Badger’s opinion, “maintenance of Gateway, like using robots that can switch out broken components, is going to be more important than logistics types of tasks.”

Badger believes that a combination of a generalized mobile manipulator like Robonaut 2 and a free flyer like Astrobee make for a good team, and this combination is currently the general concept for Gateway IVR. This is not to say that the intravehicular robots that end up on Gateway will look like the robots that have been working on the ISS, but they’ll be inspired by them, and will leverage all of the experience that NASA has gained with its robots on ISS so far. It might also be useful to have a limited number of specialized robots, Badger says. “For example, if there was a reason to get behind a rack, you may want a snake-type of robot for that.”

A casually dressed astronaut holds a toaster-sized cubical robot on the International Space Station An Astrobee robot (this one is named Bumble) on the ISS.JSC/NASA

While NASA is actively preparing for intravehicular robots on Gateway, such robots do not yet exist, and the agency may not be building these robots itself, instead relying on industry partners to deliver designs that meet NASA’s requirements. At launch, and likely for the first several years at least, Gateway will have to take care of itself without internal robotic assistants. However, one of the goals of Gateway is to operate itself completely autonomously for up to three weeks without any contact with Earth at all, mimicking the three-week solar conjunction between Earth and Mars where the sun blocks any communications between the two planets. “I think that we will get IVR on board,” Badger says. “If we really want Gateway to be able to take care of itself for 21 days, IVR is going to be a very important part of that. And having a robot is absolutely something that I think is going to be necessary as we move on to Mars.”

“Having a robot is absolutely something that I think is going to be necessary as we move on to Mars.” —Julia Badger, NASA JSC

Intravehicular robots are just half of the robotic team that will be necessary to keep Gateway running autonomously long-term. Space stations rely on complex external infrastructure for power, propulsion, thermal control, and much more. Since 2001, the ISS has been home to Canadarm2, a 17.6-meter robotic arm, which is able to move around the station to grasp and manipulate objects while under human control from either inside the station or from the ground.

The Canadian Space Agency, in partnership with space technology company MDA, is developing a new robotic-arm system for Gateway, called Canadarm3, scheduled to launch in 2027. Canadarm3 will include an 8.5-meter-long arm for grappling spacecraft and moving large objects, as well as a smaller, more dexterous robotic arm that can be used for delicate tasks. The smaller arm can even repair the larger arm if necessary. But what really sets Canadarm3 apart from its predecessors is how it’s controlled, according to Daniel Rey, Gateway chief engineer and systems manager at CSA. “One of the very novel things about Canadarm3 is its ability to operate autonomously, without any crew required,” Rey says. This capability relies on a new generation of software and hardware that gives the arm a sense of touch as well as the ability to react to its environment without direct human supervision.

“With Canadarm3, we realize that if we want to get ready for Mars, more autonomy will be required.” —Daniel Rey, CSA

Even though Gateway will be a thousand times farther away from Earth than the ISS, Rey explains that the added distance (about 400,000 kilometers) isn’t what really necessitates Canadarm3’s added autonomy. “Surprisingly, the location of Gateway in its orbit around the moon has a time delay to Earth that is not all that different from the time delay in low Earth orbit when you factor in various ground stations that signals have to pass through,” says Rey. “With Canadarm3, we realize that if we want to get ready for Mars, where that will no longer be the case, more autonomy will be required.”

Canadarm3’s autonomous tasks on Gateway will include external inspection, unloading logistics vehicles, deploying science payloads, and repairing Gateway by swapping damaged components with spares. Rey tells us that there will also be a science logistics airlock, with a moving table that can be used to pass equipment in and out of Gateway. “It’ll be possible to deploy external science, or to bring external systems inside for repair, and for future internal robotic systems to cooperate with Canadarm3. I think that’ll be a really exciting thing to see.”

Even though it’s going to take a couple of extra years for Gateway’s robotic residents to arrive, the station will be operating mostly autonomously (by necessity) as soon as the Power and Propulsion Element and the Habitation and Logistics Outpost begin their journey to lunar orbit in November o2024. Several science payloads will be along for the ride, including heliophysics and space weather experiments.

Gateway itself, though, is arguably the most important experiment of all. Its autonomous systems, whether embodied in internal and external robots or not, will be undergoing continual testing, and Gateway will need to prove itself before we’re ready to trust its technology to take us into deep space. In addition to being able to operate for 21 days without communications, one of Gateway’s eventual requirements is to be able to function for up to three years without any crew visits. This is the level of autonomy and reliability that we’ll need to be prepared for our exploration of Mars, and beyond.


Match ID: 55 Score: 5.71 source: spectrum.ieee.org age: 234 days
qualifiers: 5.71 japan

US blogger’s killers escape on motorbikes from Bangladeshi court
Mon, 21 Nov 2022 12:33:45 GMT

Men on death row for murder of secular writer snatched by bikers who sprayed police with chemical

Two Islamist militants who were on death row in Bangladesh for the killing of a US blogger critical of fundamentalist Islam have made a dramatic escape on motorbikes while being escorted to a court hearing in the capital, Dhaka.

The two men were among those convicted of the murder of Avijit Roy, an American-Bangladeshi writer and blogger who was hacked to death with machetes in the streets of Dhaka in 2015.

Continue reading...
Match ID: 56 Score: 4.29 source: www.theguardian.com age: 6 days
qualifiers: 4.29 bangladesh

Filter efficiency 92.597 (57 matches/770 results)

ABOUT THE PROJECT

RSS Rabbit links users to publicly available RSS entries.
Vet every link before clicking! The creators accept no responsibility for the contents of these entries.

Relevant

Fresh

Convenient

Agile

CONTACT

We're not prepared to take user feedback yet. Check back soon!

rssRabbit quadric